From the Hardness of Detecting Superpositions to Cryptography:

Quantum Public Key Encryption and Commitments

Minki Hhan

(KIAS)

QCrypt 2023
based on the joint work with

Tomoyuki Morimae
Takashi Yamakawa
(Kyoto Univ.)
(NTT \& Kyoto Univ.)

Contribution of [HMY'23]

1. New quantum search-to-decision reduction

- Based on a recent work of Aaronson, Atia, Susskind
- Simple \& Interesting properties: Locality preserving, with (quantum) advice
- Similar ideas implicitly appeared in previous works (quantum Goldreich-Levin, ...)

2. Applications to Quantum Cryptography

- New public key encryption based on non-abelian group action
- Efficient flavor conversion of quantum bit commitments previous: $O\left(\lambda^{2}\right)$-multiplicative factor [CLSO1,Yan22] ours: $O(1)$-additive factor \qquad

Contribution of [HMY'23]

1. New quantum search-to-decision reduction

- Based on a recent work of Aaronson, Atia, Susskind
- Simple \& Interesting properties: Locality preserving, with (quantum) advice
- Similar ideas implicitly appeared in previous works (quantum Goldreich-Levin, ...)

2. Applications to Quantum Cryptography

- New public key encryption based on non-abelian group action
- Efficient flavor conversion of quantum bit commitments previous: $O\left(\lambda^{2}\right)$-multiplicative factor [CLSO1,Yan22] ours: $O(1)$-additive factor \qquad

Main Toolkit Background

Susskind cared a "macroscopic" quantum state of space-time

$$
\frac{\mid \text { BlackHole }\rangle+\mid \text { NoBlackHole }\rangle}{2}
$$

Susskind conjectured:

```
Complexity(Seeing interference between |v\rangle and |w\rangle)
    \approx Complexity(Mapping |v\rangle to |w\rangle or vice versa)
```

... I cannot understand why

Schrödinger's cat

1. Prepare a cat in ket.
2. Measure if a single atom decaying or not. ($\frac{\mid \text { decaying }\rangle+\mid \text { not }\rangle}{\sqrt{2}}$)
3. If decaying kill the cat; do nothing otherwise.

Schrödinger's cat

According to quantum physics, the cat is simultaneously alive and dead.

Can we efficiently determine where are we?

Classically, the cat lives with prob. $1 / 2$ and is killed with prob. $1 / 2$.

Detecting interference

Distinguishing classical from quantum = Detecting interference (convexity)

Theorem for Schrödinger's cat

Our primary task is to distinguish the following two states.

[Aaronson, Atia, Susskind'20] This task is computationally equivalent to

Formal Theorem [Aaronson, Atia, Susskind arXiv:2009.07450]

Let $|x\rangle,|y\rangle$ be two orthogonal states, $|\psi\rangle=\frac{|x\rangle+|y\rangle}{\sqrt{2}},|\phi\rangle=\frac{|x\rangle-|y\rangle}{\sqrt{2}}$.
For any $\Delta>0$, the following have the same circuit complexity up to $\mathrm{O}(1)$

1) A unitary U such that

$$
\frac{|\langle y| U| x\rangle+\langle x| U|y\rangle \mid}{2}=\Delta
$$

2) An algorithm A such that

$$
\mid \operatorname{Pr}[A|\psi\rangle \rightarrow 1]-\operatorname{Pr}[A|\phi\rangle \rightarrow 1] \mid=\Delta
$$

[HMorimaeYamakawa]
We prove the same result with ancillary qubits, find some properties, ...

Proof by circuits

swap to distinguish

distinguish to swap

CS / Cryptographic interpretation

1) (Swapping) A unitary U such that

Search: Find x from y (or vice versa)

$$
\frac{|\langle y| U| x\rangle+\langle x| U|y\rangle \mid}{2}=\Delta
$$

2) (Distinguishing) An algorithm A that distinguishes $|\psi\rangle,|\phi\rangle$ with bias Δ, that is, $\mid \operatorname{Pr}[A|\psi\rangle \rightarrow 1]-\operatorname{Pr}[A|\phi\rangle \rightarrow 1] \mid=\Delta$
"Search-to-decision reduction"
Decision: Determine if it is $|\psi\rangle$ or $|\phi\rangle$

- (SAT) If we can efficiently decide if a formula has a solution, then we can find a solution of a formula.
- (Crypto) If one-way function exists, then there is a unpredictable bit.

AAS equivalence theorem shows a new quantum search-to-decision reduction.

AAS theorem as search-to-decision reduction

AAS theorem is a new quantum search-to-decision reduction.
This is our main message.

Similar ideas are implicitly used in literature

- Quantum Goldreich-Levin theorem
- Some technical parts of collapsing/collapse-binding literatures (pure vs mixed instead of interference)

We found new applications in quantum cryptography

- Quantum-ciphertext public key encryptions from non-abelian group action
- Efficient flavor conversion of quantum bit commitments

Example: Quantum Goldreich-Levin theorem

One-way permutation is $P:[N] \rightarrow[N]$ that is

- easy to compute forward
$(|x, 0\rangle \rightarrow|x, P(x)\rangle$ is easy for any x$)$
- hard to invert $\quad(|P(x), 0\rangle \rightarrow|P(x), x\rangle$ is hard for random x$)$

Question:
Can we extract "hard-to-predict" bit from this inversion-hard function?
[Goldreich-Levin] $r \cdot x$ is hard to compute given $(P(x), r)$.

A quantum proof by [Adcock\&Cleve'02]
We can interpret it using the equivalence theorem.

Example: Quantum Goldreich-Levin theorem

One-way permutation is $P:[N] \rightarrow[N]$ that is

- easy to compute forward
$(|x, 0\rangle \rightarrow|x, P(x)\rangle$ is easy for any x$)$
- hard to invert $\quad(|P(x), 0\rangle \rightarrow|P(x), x\rangle$ is hard for random x$)$

Equivalently, it is hard to swap $|P(x), 0,0\rangle$ and $|P(x), 1, x\rangle$
By AAS equivalence, it is hard to distinguish

$$
|P(x)\rangle \otimes \frac{|0,0\rangle \pm|1, x\rangle}{\sqrt{2}}
$$

Example: Quantum Goldreich-Levin theorem

It is hard to distinguish

$$
|P(x)\rangle \otimes \frac{|0,0\rangle \pm|1, x\rangle}{\sqrt{2}}
$$

Measure the second parts on a Hadamard basis.

- $|P(x)\rangle \otimes \sum_{r}|r \cdot x, r\rangle$ if the sign is +
- $|P(x)\rangle \otimes \sum_{r}|r \cdot x \oplus 1, r\rangle$ if the sign is -

Two states are hard to distinguish,
i.e., computing $r \cdot x$ from $(P(x), r)$ is hard!

Applications

Swapping $|x\rangle$ and $|y\rangle$ is equivalent to distinguishing

$$
|x\rangle \pm|y\rangle
$$

- Quantum-ciphertext PKE from non-abelian group action Previously, only minicrypt constructions are known
- Efficient flavor conversion of quantum bit commitment Two definitions of commitments are essentially the same

Cryptographic (non-abelian) group action

Group G and set S, group action $G \times S \rightarrow S$ denoted by $(g, s) \mapsto g \cdot s$:

$$
e \cdot s=s, \quad g \cdot(h \cdot s)=(g h) \cdot s
$$

(One-way)	Hard to find g from $(s, g \cdot s)$	$(s, g \cdot s) \mapsto g$ is hard
(Pseudorandom)	$(s, g \cdot s)$ looks like random (s, t)	$(s, g \cdot s) \approx(s, t)$

PKE from non-abelian group action is an open problem posed in [JQSY19]

Abelian group actions naturally allow Diffie-Hellman style key exchange
Alice: $(g, g \cdot s) \quad$ Bob: $(h, h \cdot s)$, share $(g \cdot s, h \cdot s)$ then each can compute

$$
(g h) \cdot s=g \cdot(h \cdot s)=h \cdot(g \cdot s)=(h g) \cdot s
$$

[HMorimaeYamakawa] Quantum PKE from non-abelian group action

Contributions in diagram (+ more)

[HMorimaeYamakawa] Quantum PKE from non-abelian group action

PKE from non-abelian group action, idea

Possible via AAS equivalence theorem albeit with quantum ciphertexts

Encode bit in phase

For group action $G \times S \rightarrow S$, if a ciphertext of b is of the form

$$
\left|\phi^{b}\right\rangle=\frac{|0\rangle|s\rangle+(-1)^{b}|1\rangle|g \cdot s\rangle}{\sqrt{2}}
$$

for random $s \in S, g \in G$.

AAS theorem: Distinguishing $\left|\phi^{0}\right\rangle$ from $\left|\phi^{1}\right\rangle$ is at least as hard as
finding a map from $|s\rangle$ to $|g \cdot s\rangle$; it probably know g, breaking one-wayness

PKE from non-abelian group action

For a public key ($\left.s_{0}=s, s_{1}=g \cdot s\right)$, a ciphertext of b is of the form

$$
\left|\phi^{b}\right\rangle \propto|0\rangle \sum_{h: h \cdot s_{0}=y}|h\rangle+(-1)^{b}|1\rangle \sum_{h: h \cdot s_{1}=y}|h\rangle
$$

for random $y \in S$.

- easily constructible

1. Prepare $\sum_{h \in G}|0\rangle|h\rangle+(-1)^{b}|1\rangle|h\rangle$
2. Append new register and compute $\sum_{h \in G}|0\rangle|h\rangle\left|h \cdot s_{0}\right\rangle+(-1)^{b}|1\rangle|h\rangle\left|h \cdot s_{1}\right\rangle$
3. Measure the last register to obtain y, which collapses to the ciphertext.

- if underlying action is pseudorandom
- if underlying action is one-way,

Cf) Inspired by the "win-win" result of [Zha19]
then it is IND-CPA secure
then it is IND-CPA secure
... or we can construct a one-shot signature

(Non-interactive) Bit commitment

Sender A vs Receiver B
Sender commit a bit b, and later can reveal "it's the commitment of b."
[Committing] A commits bit b (say $=1$) with "the commitment" c
[Opening] A reveals "the opening" o and B convinces what was $b(=1)$

Security of Bit commitment

Sender A vs Receiver B

Sender commit a bit b, and later can reveal "it's the commitment of b."

Receiver cannot know b until reveal. Sender can't change bafter commit.

Hiding
Binding

We want the binding/hiding statistically hold, which is impossible (even for quantum)

Relax one of them by secure against (non-uniform) polynomial time algorithms.

1. (Statistically) Hiding commitment
2. (Statistically) Binding commitment

(Canonical) Quantum bit commitment

Using quantum channels for communication

- Simpler constructions
- Inherently non-interactive [Yan22]

A prepares $\left|\phi_{b}\right\rangle_{C R}$ and sends C as a commitment, sends R as an opening.

- Efficient conversion of flavors [Yan22] stat. hiding comp. binding \leftrightarrow stat. binding comp. hiding
[HMorimaeYamakawa] Better conversion Two notions are essentially equivalent

$$
\text { open = register } \mathrm{R}
$$

More on AAS equivalence

Locality-preserving:
If $A(\operatorname{or} U)$ does not act on some qubits, then $U(\operatorname{or} A)$ does not act on those qubits either.
Advice version:
The theorem holds even if there is ancillary qubits (with a worse bound)

Efficient conversion (hiding \Leftrightarrow binding), idea

$U_{0}|0\rangle=\left|\phi_{0}\right\rangle_{C}$ and $U_{1}|0\rangle=\left|\phi_{1}\right\rangle_{C R}$ be the commitment states
Sender holds the reveal register \mathbf{R} and sends the commitment register C .

Hiding/Biding have the following locality features.
(Hiding) $\left|\phi_{0}\right\rangle_{C R}$ and $\left|\phi_{1}\right\rangle_{C R}$ are hard to distinguish by unitary over C (Binding) $\left|\phi_{0}\right\rangle_{C R}$ and $\left|\phi_{1}\right\rangle_{C R}$ are hard to swap by unitary over R

Let $\left|\psi_{b}\right\rangle=\frac{\left|\phi_{0}\right\rangle+(-1)^{b}\left|\phi_{1}\right\rangle}{\sqrt{2}}$, then AAS theorem says that
(Binding) \quad swapping $\left|\phi_{0}\right\rangle_{C R}$ and $\left|\phi_{1}\right\rangle_{C R}$ $|\mid$
by unitary over R
distinguishing $\left|\psi_{0}\right\rangle_{C R}$ and $\left|\psi_{1}\right\rangle_{C R}$
by unitary over R
(Hiding')

Our compiler

$U_{0}|0\rangle=\left|\phi_{0}\right\rangle_{C R}$ and $U_{1}|0\rangle=\left|\phi_{1}\right\rangle_{C R}$ be the commitment states

The new commitment scheme commits b by

$$
\frac{|0\rangle\left|\phi_{0}\right\rangle+(-1)^{b}|1\rangle\left|\phi_{1}\right\rangle}{\sqrt{2}}
$$

1) If original scheme is X-hiding then new scheme is X-binding
2) If original scheme if Y-binding then new scheme is Y-hiding
$X, Y=$ perfect, statistical, computational

Conclusion

1. New quantum search-to-decision reduction based on the equivalence theorem [AAS20] of detecting interference and swapping two states, with some generalizations.
2. Showing the power of new reduction by applications - New quantum-ciphertext PKE from non-abelian group action

- Efficient quantum commitment flavor conversion

Thanks! Any question?

Annoying definition of "swapping"

Swapping advantage is highly non-standard.

Orthogonality/specific target are annoying.

$$
\frac{|\langle y| U| x\rangle+\langle x| U|y\rangle \mid}{2}=\Delta
$$

We may need to do a large amount of extra works for obtaining a bound on the usual definition something like:

$$
\frac{\left.|\langle y| U| x\rangle\left.\right|^{2}+|\langle x| U| y\right\rangle\left.\right|^{2}}{2}
$$

Alternative version from [GJMZ23]

Hermitian $W=\Pi_{+1}-\Pi_{-1}$ where $\Pi_{ \pm 1}$ are the ± 1 eigenspaces of W
A quantum state $|\psi\rangle$ is chosen by adversary.
Let $\left|\psi_{ \pm}\right\rangle=\Pi_{ \pm 1}|\psi\rangle$, the following two advantages are similar:

1) Distinguishing $\Pi_{b}|\psi\rangle$ for unknown $b \in\{ \pm 1\}$.
2) Mapping $\Pi_{ \pm 1}|\psi\rangle$ into any state in $\Pi_{\mp 1}$, or

$$
\| \Pi_{-1} U \Pi_{+1}|\psi\rangle \|^{2}
$$

If we simply write $\Pi_{b}=|b\rangle\langle b| \otimes I$ and $|\psi\rangle=|0, x\rangle+|1, y\rangle$, it says TFAE:

1) Distinguishing $|0, x\rangle \pm|1, y\rangle$
2) Mapping $|0, x\rangle$ to $|1, \star\rangle$

Collapsing version from [Zha22]

Recall that distinguishing $|x\rangle \pm|y\rangle$ is equivalent to the distinguishing

$$
|x\rangle+|y\rangle \text { and }(1 / 2, \mathrm{x}),(1 / 2, \mathrm{y})
$$

which is equivalent to distinguishing $|x\rangle+|y\rangle$ from its measurement result! In general, we can extend it for one direction: let x_{j} be orthogonal and let \mathbf{q} : poly

$$
|\psi\rangle=\sum_{0 \leq j\langle q}\left|x_{j}, y_{j}\right\rangle
$$

we can show that distinguishing $|\psi\rangle$ from its measurement result using a binary measurement P is hard if the following holds:

1. Measure $|\psi\rangle$ with $\left\{\left|x_{j}\right\rangle\left\langle x_{j}\right| \otimes I\right\}$ and obtain j with $\left|x_{j}, y_{j}\right\rangle$ with prob $\left|\left|y_{j}\right\rangle\right|^{2}$
2. Apply P to the result
3. Measure it again with $\left\{\left|x_{j}\right\rangle\left\langle x_{j}\right| \otimes I\right\}$, then whp the result is j again.
