From the Hardness of Detecting Superpositions to Cryptography:

Quantum Public Key Encryption and Commitments

Minki Hhan

(KIAS)

QCrypt 2023

based on the joint work with

Tomoyuki Morimae Takashi Yamakawa (Kyoto Univ.) (NTT & Kyoto Univ.)

Contribution of [HMY'23]

- 1. New *quantum* search-to-decision reduction
 - Based on a recent work of Aaronson, Atia, Susskind
 - Simple & Interesting properties: Locality preserving, with (quantum) advice
 - Similar ideas implicitly appeared in previous works (quantum Goldreich-Levin, ...)
- 2. Applications to Quantum Cryptography
 - New public key encryption based on non-abelian group action
 - Efficient flavor conversion of quantum bit commitments previous: *O*(λ²)-multiplicative factor [CLS01,Yan22] ours: *O*(1)-additive factor

Open problem in [JQSY19]

Original motivation was

from quantum gravity

Concurrent work [GJMZ23]

Contribution of [HMY'23]

1. New *quantum* search-to-decision reduction

- Based on a recent work of Aaronson, Atia, Susskind
- Simple & Interesting properties: Locality preserving, with (quantum) advice
- Similar ideas implicitly appeared in previous works (quantum Goldreich-Levin, ...)
- 2. Applications to Quantum Cryptography
 - New public key encryption based on non-abelian group action
 - Efficient flavor conversion of quantum bit commitments previous: *O*(λ²)-multiplicative factor [CLS01,Yan22] ours: *O*(1)-additive factor

Open problem in [JQSY19]

Original motivation was

from quantum gravity

Concurrent work [GJMZ23]

Main Toolkit Background

Susskind cared a "macroscopic" quantum state of space-time

 $|BlackHole\rangle + |NoBlackHole\rangle$

2

Susskind conjectured:

Complexity(Seeing interference between $|v\rangle$ and $|w\rangle$) \approx Complexity(Mapping $|v\rangle$ to $|w\rangle$ or vice versa)

... I cannot understand why

Schrödinger's cat

- 1. Prepare a cat in ket.
- 2. Measure if a single atom decaying or not. $\left(\frac{|decaying\rangle + |not\rangle}{\sqrt{2}}\right)$
- 3. If decaying kill the cat; do nothing otherwise.

Schrödinger's cat

According to quantum physics, the cat is simultaneously alive and dead.

Detecting interference

Distinguishing classical from quantum = Detecting interference (convexity)

Theorem for Schrödinger's cat

Our primary task is to distinguish the following two states.

[Aaronson, Atia, Susskind'20] This task is *computationally* equivalent to the task to *swap* $| \not \square \rangle$ and $| \not \square \rangle$, meaning that a unitary U such that

Detecting superposition in Schrödinger's cat is as hard as *resurrecting a dead cat* to alive (Necromancy-hard)

Formal Theorem [Aaronson, Atia, Susskind arXiv:2009.07450]

Let $|x\rangle$, $|y\rangle$ be two orthogonal states, $|\psi\rangle = \frac{|x\rangle + |y\rangle}{\sqrt{2}}$, $|\phi\rangle = \frac{|x\rangle - |y\rangle}{\sqrt{2}}$. For any $\Delta > 0$, the following have the same circuit complexity up to O(1) 1) A unitary U such that $\frac{|\langle y|U|x\rangle + \langle x|U|y\rangle|}{2} = \Delta$ 2) An algorithm A such that $|\Pr[A|\psi\rangle \rightarrow 1] - \Pr[A|\phi\rangle \rightarrow 1]| = \Delta$

[HMorimaeYamakawa]

We prove the same result with ancillary qubits, find some properties, ...

Proof by circuits

swap to distinguish

distinguish to swap

CS / Cryptographic interpretation

- (SAT) If we can efficiently decide if a formula has a solution, then we can find a solution of a formula.
- (Crypto) If one-way function exists, then there is a unpredictable bit.

AAS equivalence theorem shows a new quantum search-to-decision reduction.

AAS theorem as search-to-decision reduction

AAS theorem is **a new** *quantum* **search-to-decision reduction**. This is our main message.

Similar ideas are implicitly used in literature

- Quantum Goldreich-Levin theorem
- Some technical parts of collapsing/collapse-binding literatures (pure vs mixed instead of interference)

We found new applications in quantum cryptography

- Quantum-ciphertext public key encryptions from non-abelian group action
- Efficient flavor conversion of quantum bit commitments

Example: Quantum Goldreich-Levin theorem

One-way permutation is $P: [N] \rightarrow [N]$ that is

- easy to compute forward $(|x, 0\rangle \rightarrow |x, P(x)\rangle$ is easy for any x)
- hard to invert $(|P(x), 0\rangle \rightarrow |P(x), x\rangle$ is hard for random x)

Question: Can we extract "hard-to-predict" **bit** from this inversion-hard function?

[Goldreich-Levin] $r \cdot x$ is hard to compute given (P(x), r).

A quantum proof by [Adcock&Cleve'02] We can interpret it using the equivalence theorem.

Example: Quantum Goldreich-Levin theorem

One-way permutation is $P: [N] \rightarrow [N]$ that is

- easy to compute forward $(|x, 0\rangle \rightarrow |x, P(x)\rangle$ is easy for any x)
- hard to invert $(|P(x), 0\rangle \rightarrow |P(x), x\rangle$ is hard for random x)

Equivalently, it is hard to swap $|P(x), 0, 0\rangle$ and $|P(x), 1, x\rangle$

By AAS equivalence, it is hard to distinguish $|P(x)\rangle \otimes \frac{|0,0\rangle \pm |1,x\rangle}{\sqrt{2}}$

Example: Quantum Goldreich-Levin theorem

It is hard to distinguish

$$|P(x)\rangle \otimes \frac{|0,0\rangle \pm |1,x\rangle}{\sqrt{2}}$$

Measure the second parts on a Hadamard basis.

- $|P(x)\rangle \otimes \sum_{r} |r \cdot x, r\rangle$ if the sign is +
- $|P(x)\rangle \otimes \sum_{r} |r \cdot x \bigoplus 1, r\rangle$ if the sign is -

Two states are hard to distinguish, i.e., computing $r \cdot x$ from (P(x), r) is hard!

Applications

Swapping $|x\rangle$ and $|y\rangle$ is equivalent to distinguishing $|x\rangle \pm |y\rangle$

- Quantum-ciphertext PKE from non-abelian group action Previously, only minicrypt constructions are known
- Efficient flavor conversion of quantum bit commitment Two definitions of commitments are essentially the same

Cryptographic (non-abelian) group action

Group *G* and set *S*, group action $G \times S \rightarrow S$ denoted by $(g,s) \mapsto g \cdot s$: $e \cdot s = s$, $g \cdot (h \cdot s) = (gh) \cdot s$

(One-way)	Hard to find g from $(s, g \cdot s)$	$(s, g \cdot s) \mapsto g$ is hard
(Pseudorandom)	$(s, g \cdot s)$ looks like random (s, t)	$(s, g \cdot s) \approx (s, t)$

PKE from non-abelian group action is an open problem posed in [JQSY19]

Abelian group actions naturally allow Diffie-Hellman style key exchange Alice: $(g, g \cdot s)$ Bob: $(h, h \cdot s)$, share $(g \cdot s, h \cdot s)$ then each can compute $(gh) \cdot s = g \cdot (h \cdot s) = h \cdot (g \cdot s) = (hg) \cdot s$

[HMorimaeYamakawa] Quantum PKE from non-abelian group action

Classical construction (possibility)

• Quantum construction (Our)

Contributions in diagram (+ more)

[HMorimaeYamakawa] Quantum PKE from non-abelian group action

PKE from non-abelian group action, idea

Possible via AAS equivalence theorem albeit with quantum ciphertexts Encode bit in *phase*

AAS theorem: Distinguishing $|\phi^0\rangle$ from $|\phi^1\rangle$ is at least as hard as finding a map from $|s\rangle$ to $|g \cdot s\rangle$; it probably know g, breaking one-wayness

PKE from non-abelian group action

For a public key $(s_0 = s, s_1 = g \cdot s)$, a ciphertext of b is of the form $|\phi^b\rangle \propto |0\rangle \sum_{h:h\cdot s_0=y} |h\rangle + (-1)^b |1\rangle \sum_{h:h\cdot s_1=y} |h\rangle$

for random $y \in S$.

- easily constructible
- 1. Prepare $\sum_{h \in G} |0\rangle |h\rangle + (-1)^b |1\rangle |h\rangle$
- 2. Append new register and compute $\sum_{h \in G} |0\rangle |h\rangle |h \cdot s_0\rangle + (-1)^b |1\rangle |h\rangle |h \cdot s_1\rangle$
- 3. Measure the last register to obtain y, which collapses to the ciphertext.
- if underlying action is pseudorandom
- if underlying action is one-way,

Cf) Inspired by the "win-win" result of [Zha19]

then it is IND-CPA secure then it is IND-CPA secure ... or we can construct a one-shot signature

(Non-interactive) Bit commitment

Sender A vs Receiver B

Security of Bit commitment

Sender A vs Receiver B

Sender commit a bit b,
and later can reveal "it's the commitment of b."Receiver cannot know b until reveal.HidingSender can't change b after commit.Binding

We want the binding/hiding statistically hold, which is impossible (even for quantum)

Relax one of them by secure against (non-uniform) polynomial time algorithms.

- 1. (Statistically) Hiding commitment
- 2. (Statistically) Binding commitment

(Canonical) Quantum bit commitment

More on AAS equivalence

Locality-preserving:

If A (or U) does not act on some qubits, then U (or A) does not act on those qubits either.

Advice version:

The theorem holds even if there is ancillary qubits (with a worse bound)

Efficient conversion (hiding \Leftrightarrow binding), idea

 $|U_0|0\rangle = |\phi_0\rangle_C$ and $|U_1|0\rangle = |\phi_1\rangle_{CR}$ be the commitment states; $|\phi_b\rangle_{CR}$ Sender holds the reveal register R b=1 and sends the commitment register C. Hiding/Biding have the following locality features. commit = register C (Hiding) $|\phi_0\rangle_{CR}$ and $|\phi_1\rangle_{CR}$ are hard to distinguish by unitary over C (Binding) $|\phi_0\rangle_{CR}$ and $|\phi_1\rangle_{CR}$ are hard to swap by unitary over R Let $|\psi_b\rangle = \frac{|\phi_0\rangle + (-1)^b |\phi_1\rangle}{\sqrt{2}}$, then AAS theorem says that b=1!! (Binding) swapping $|\phi_0\rangle_{CR}$ and $|\phi_1\rangle_{CR}$ by unitary over R open = register R distinguishing $|\psi_0\rangle_{CR}$ and $|\psi_1\rangle_{CR}$ (Hiding') by unitary over R

Not orthogonal

Our compiler

 $U_0|0\rangle = |\phi_0\rangle_{CR}$ and $U_1|0\rangle = |\phi_1\rangle_{CR}$ be the commitment states

The new commitment scheme commits b by $\frac{|0\rangle|\phi_0\rangle+(-1)^b|1\rangle|\phi_1\rangle}{\sqrt{2}}$

1) If original scheme is X-hiding then new scheme is X-binding

2) If original scheme if Y-binding then new scheme is Y-hiding X,Y=perfect, statistical, computational

Concurrent work by Gunn, Ju, Ma, Zhandry

Conclusion

1. New quantum search-to-decision reduction based on the equivalence theorem [AAS20] of detecting interference and swapping two states, with some generalizations.

- 2. Showing the power of new reduction by applications
 - New quantum-ciphertext PKE from non-abelian group action
 - Efficient quantum commitment flavor conversion

Thanks!

Any question?

Annoying definition of "swapping"

Swapping advantage is highly non-standard.

Orthogonality/specific target are annoying. $\frac{|\langle y|U|x\rangle + \langle x|U|y\rangle|}{2} = \Delta$

We may need to do a large amount of extra works for obtaining a bound on the usual definition something like: $\frac{|\langle y|U|x\rangle|^2 + |\langle x|U|y\rangle|^2}{|\langle y|U|x\rangle|^2 + |\langle x|U|y\rangle|^2}$

2

Alternative version from [GJMZ23]

Hermitian $W = \Pi_{\pm 1} - \Pi_{-1}$ where $\Pi_{\pm 1}$ are the ± 1 eigenspaces of WA quantum state $|\psi\rangle$ is **chosen by adversary**. Let $|\psi_{\pm}\rangle = \Pi_{\pm 1} |\psi\rangle$, the following two advantages are similar: 1) Distinguishing $\Pi_{b} |\psi\rangle$ for unknown $b \in \{\pm 1\}$. 2) Mapping $\Pi_{\pm 1} |\psi\rangle$ into **any** state in $\Pi_{\mp 1}$, or $||\Pi_{-1}U\Pi_{\pm 1} |\psi\rangle||^{2}$

If we simply write $\Pi_b = |b\rangle\langle b| \otimes I$ and $|\psi\rangle = |0, x\rangle + |1, y\rangle$, it says TFAE:

- 1) Distinguishing $|0, x\rangle \pm |1, y\rangle$
- 2) Mapping $|0, x\rangle$ to $|1, \star\rangle$

Collapsing version from [Zha22]

Recall that distinguishing $|x\rangle \pm |y\rangle$ is equivalent to the distinguishing $|x\rangle + |y\rangle$ and (1/2,x),(1/2,y)

which is equivalent to distinguishing $|x\rangle + |y\rangle$ from *its measurement result!* In general, we can extend it for one direction: let x_i be orthogonal and let **q: poly**

$$|\psi\rangle = \sum_{0 \le j < q} |x_j, y_j\rangle$$

we can show that distinguishing $|\psi\rangle$ from its measurement result using a binary measurement P is hard if the following holds:

- 1. Measure $|\psi\rangle$ with $\{|x_j\rangle\langle x_j|\otimes I\}$ and obtain j with $|x_j, y_j\rangle$ with prob $||y_j\rangle|^2$
- 2. Apply P to the result
- 3. Measure it again with $\{|x_j\rangle\langle x_j|\otimes I\}$, then whp the result is j again.