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Contribution of [HMY’23]

1. New quantum search-to-decision reduction
• Based on a recent work of Aaronson, Atia, Susskind
• Simple & Interesting properties: Locality preserving, with (quantum) advice
• Similar ideas implicitly appeared in previous works (quantum Goldreich-Levin, …)

2. Applications to Quantum Cryptography
• New public key encryption based on non-abelian group action
• Efficient flavor conversion of quantum bit commitments

previous: 𝑂 𝜆 -multiplicative factor [CLS01,Yan22]
ours: 𝑂(1)-additive factor

Open problem in [JQSY19]

Original motivation was 
from quantum gravity

Concurrent work [GJMZ23]
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Main Toolkit Background
Susskind cared a “macroscopic” quantum state of space-time

Susskind conjectured:

… I cannot understand why

Complexity( Seeing interference between |𝑣⟩ and 𝑤 )
≈ Complexity( Mapping |𝑣⟩ to |𝑤⟩ or vice versa)



Schrödinger's cat
1. Prepare a cat in ket.

2. Measure if a single atom decaying or not. ( | ⟩)

3. If decaying kill the cat; do nothing otherwise.



Schrödinger's cat
According to quantum physics, the cat is simultaneously alive and dead.

Classically, the cat lives with prob. ½ and is killed with prob. ½.

½ ½ 

Can we efficiently
determine where are we?



Detecting interference
Distinguishing classical from quantum = Detecting interference (convexity)



Theorem for Schrödinger's cat
Our primary task is to distinguish the following two states.

                                  

vs    
                                  

[Aaronson, Atia, Susskind’20] This task is computationally equivalent to 
the task to swap and , meaning that a unitary such that 

Observing interference 
between |Alive⟩ and |Dead⟩

Swapping
|Alive⟩ and |Dead⟩

has similar circuit size

Detecting superposition in Schrödinger's cat is as hard as
resurrecting a dead cat to alive (Necromancy-hard)



Formal Theorem [Aaronson, Atia, Susskind arXiv:2009.07450]

Let be two orthogonal states, | ⟩ | ⟩.
For any , the following have the same circuit complexity up to O(1)
1) A unitary such that

2) An algorithm such that

[HMorimaeYamakawa] 
We prove the same result with ancillary qubits, find some properties, …

Δ = 1: perfect case
this covers the 

imperfect version



Proof by circuits

swap to distinguish distinguish to swap

or



CS / Cryptographic interpretation
1) (Swapping) A unitary such that

| 𝑦 𝑈 𝑥 + 𝑥 𝑈 𝑦 |

2
= Δ

2) (Distinguishing) An algorithm that distinguishes with bias , that is,
Pr 𝐴 𝜓 → 1 − Pr 𝐴 𝜙 → 1]| = Δ

“Search-to-decision reduction”

• (SAT) If we can efficiently decide if a formula has a solution,
then we can find a solution of a formula.

• (Crypto) If one-way function exists, then there is a unpredictable bit.

AAS equivalence theorem shows a new quantum search-to-decision reduction.

Search: Find x from y (or vice versa)

Decision: Determine if it is |𝜓⟩ or |𝜙⟩



AAS theorem as search-to-decision reduction
AAS theorem is a new quantum search-to-decision reduction.
This is our main message.

Similar ideas are implicitly used in literature
• Quantum Goldreich-Levin theorem
• Some technical parts of collapsing/collapse-binding literatures (pure vs mixed instead of interference)

We found new applications in quantum cryptography
• Quantum-ciphertext public key encryptions from non-abelian group action
• Efficient flavor conversion of quantum bit commitments



Example: Quantum Goldreich-Levin theorem
One-way permutation is that is 
• easy to compute forward ( is easy for any x)
• hard to invert ( is hard for random x)

Question: 
Can we extract “hard-to-predict” bit from this inversion-hard function?

[Goldreich-Levin] is hard to compute given .

A quantum proof by [Adcock&Cleve’02]
We can interpret it using the equivalence theorem.



Example: Quantum Goldreich-Levin theorem
One-way permutation is that is 
• easy to compute forward ( is easy for any x)
• hard to invert ( is hard for random x)

Equivalently, it is hard to swap and 

By AAS equivalence, it is hard to distinguish



Example: Quantum Goldreich-Levin theorem
It is hard to distinguish

Measure the second parts on a Hadamard basis.
• if the sign is +
• if the sign is -

Two states are hard to distinguish, 
i.e., computing from is hard!



Applications
Swapping and is equivalent to distinguishing

• Quantum-ciphertext PKE from non-abelian group action
Previously, only minicrypt constructions are known

• Efficient flavor conversion of quantum bit commitment
Two definitions of commitments are essentially the same



Cryptographic (non-abelian) group action
Group and set , group action denoted by :

(One-way) Hard to find 𝑔 from 𝑠, 𝑔 ⋅ 𝑠 𝑠, 𝑔 ⋅ 𝑠 ↦ 𝑔 is hard
(Pseudorandom) (𝑠, 𝑔 ⋅ 𝑠) looks like random (𝑠, 𝑡) 𝑠, 𝑔 ⋅ 𝑠 ≈ (𝑠, 𝑡)

PKE from non-abelian group action is an open problem posed in [JQSY19]

Abelian group actions naturally allow Diffie-Hellman style key exchange
Alice: (𝑔, 𝑔 ⋅ 𝑠) Bob: ℎ, ℎ ⋅ 𝑠 , share 𝑔 ⋅ 𝑠, ℎ ⋅ 𝑠 then each can compute 

𝑔ℎ ⋅ 𝑠 = 𝑔 ⋅ ℎ ⋅ 𝑠 = ℎ ⋅ 𝑔 ⋅ 𝑠 = ℎ𝑔 ⋅ 𝑠

[HMorimaeYamakawa] Quantum PKE from non-abelian group action



Contributions in diagram (+ more)
Classical construction (possibility)
Quantum construction (Our)

Lattice

Abelian group action

Code

Nonabelian group action

Public key primitives

Symmetric key primitives

[HMorimaeYamakawa] Quantum PKE from non-abelian group action



PKE from non-abelian group action, idea
Possible via AAS equivalence theorem albeit with quantum ciphertexts

Encode bit in phase

For group action 𝐺 × 𝑆 → 𝑆, if a ciphertext of 𝑏 is of the form

𝜙 =  
0 𝑠 + −1 1 |𝑔 ⋅ 𝑠⟩

2

for random 𝑠 ∈ 𝑆, 𝑔 ∈ 𝐺.

AAS theorem: Distinguishing |𝜙 ⟩ from |𝜙 ⟩ is at least as hard as
finding a map from |𝑠⟩ to 𝑔 ⋅ 𝑠 ; it probably know 𝑔, breaking one-wayness

How to construct?



PKE from non-abelian group action
For a public key , a ciphertext of is of the form

: ⋅ : ⋅

for random 
• easily constructible
1. Prepare ∑ 0 ℎ + −1 1 |∈ ℎ〉

2. Append new register and compute ∑ 0 ℎ |ℎ ⋅ 𝑠 〉 + −1 1 |ℎ〉|∈ ℎ ⋅ 𝑠 〉

3. Measure the last register to obtain 𝑦, which collapses to the ciphertext.

• if underlying action is pseudorandom then it is IND-CPA secure
• if underlying action is one-way, then it is IND-CPA secure

… or we can construct a one-shot signature
Cf) Inspired by the “win-win” result of [Zha19]



(Non-interactive) Bit commitment
Sender A vs Receiver B
Sender commit a bit b, 
and later can reveal “it’s the commitment of b.”

[Committing] A commits bit b (say =1) with 
“the commitment” c

[Opening] A reveals “the opening” o and 
B convinces what was b (=1)

c=commit(b)

b=1

b=1!!

o=open(c)



Security of Bit commitment
Sender A vs Receiver B
Sender commit a bit b, 
and later can reveal “it’s the commitment of b.”
Receiver cannot know b until reveal. Hiding
Sender can’t change b after commit. Binding

We want the binding/hiding statistically hold,
which is impossible (even for quantum)

Relax one of them by secure against 
(non-uniform) polynomial time algorithms.
1. (Statistically) Hiding commitment
2. (Statistically) Binding commitment

c=commit(b)

b=1

b=1!!

o=open(c)

b=0!!

b=1!!



(Canonical) Quantum bit commitment
Using quantum channels for communication

• Simpler constructions
• Inherently non-interactive [Yan22]

A prepares 𝜙 and  sends C as a commitment,
sends R as an opening.

• Efficient conversion of flavors [Yan22]
stat. hiding comp. binding ↔ stat. binding comp. hiding

[HMorimaeYamakawa] Better conversion
Two notions are essentially equivalent

commit = register C

𝜙
b=1

b=1!!

open = register R

CR



More on AAS equivalence

Locality-preserving: 
If A (or U) does not act on some qubits, then U (or A) does not act on those qubits either.

Advice version: 
The theorem holds even if there is ancillary qubits (with a worse bound)

or



Efficient conversion (hiding binding), idea
𝑈 |0⟩ = 𝜙 and 𝑈 |0⟩ = 𝜙 be the commitment states;
Sender holds the reveal register R

and sends the commitment register C.

Hiding/Biding have the following locality features.
(Hiding) 𝜙 and 𝜙 are hard to distinguish by unitary over C

(Binding) 𝜙 and 𝜙 are hard to swap by unitary over R

Let 𝜓 =
| ⟩, then AAS theorem says that 

(Binding) swapping 𝜙 and 𝜙
by unitary over R
| |

(Hiding’)  distinguishing 𝜓 and 𝜓
by unitary over R

Not orthogonal

commit = register C

𝜙
b=1

b=1!!

open = register R

CR



Our compiler
and be the commitment states

The new commitment scheme commits b by

1) If original scheme is X-hiding then new scheme is X-binding
2) If original scheme if Y-binding then new scheme is Y-hiding

X,Y=perfect, statistical, computational

Concurrent work by Gunn,Ju,Ma,Zhandry



Conclusion
1. New quantum search-to-decision reduction based on the 

equivalence theorem [AAS20] of detecting interference and 
swapping two states, with some generalizations.

2. Showing the power of new reduction by applications
• New quantum-ciphertext PKE from non-abelian group action
• Efficient quantum commitment flavor conversion



Any question?



Annoying definition of “swapping”
Swapping advantage is highly non-standard.

Orthogonality/specific target are annoying.

We may need to do a large amount of extra works for obtaining a 
bound on the usual definition something like:



Alternative version from [GJMZ23]
Hermitian where ± are the eigenspaces of 
A quantum state is chosen by adversary.
Let ± ± , the following two advantages are similar:
1) Distinguishing for unknown .
2) Mapping ± into any state in ∓ , or

If we simply write and , it says TFAE:
1) Distinguishing 
2) Mapping to 



Collapsing version from [Zha22]
Recall that distinguishing is equivalent to the distinguishing

and (1/2,x),(1/2,y)
which is equivalent to distinguishing from its measurement result!
In general, we can extend it for one direction: let be orthogonal and let q: poly

we can show that distinguishing from its measurement result using a binary 
measurement P is hard if the following holds:

1. Measure with and obtain j with with prob

2. Apply P to the result
3. Measure it again with , then whp the result is j again. 


