

Quantum Cryptography in Algorithmica August 14, 2023

<u>William Kretschmer</u>, Luowen Qian, Makrand Sinha, Avishay Tal arXiv:2212.00879

Introduction

Algorithmica	P = NP
Heuristica	$P \neq NP$
Pessiland	DistNP
Minicrypt	∃ OWFs
Cryptomania	∃ PKE

I

NP but DistNP \subseteq AvgP $\mathsf{NP} \not\subseteq \mathsf{AvgP} \mathsf{but} \nexists \mathsf{OWFs}$ NFs but∄PKE E

Algorithmica	P = NP
Heuristica	$P eq NP but DistNP \subseteq AvgP$
Pessiland	$DistNP \not\subseteq AvgP but \nexists OWFs$
Minicrypt	∃ OWFs but ∄ PKE
Cryptomania	∃ PKE

Definition

$$f: \{0,1\}^n \rightarrow \{0,1\}^m$$
 is one-way if:

- f efficiently computable
- For all poly-time \mathcal{A} :

$$\Pr_{x \sim \{0,1\}^n} \left[f(\mathcal{A}(f(x))) = f(x) \right] \le \mathsf{negl}(n)$$

Definition

$$f: \{0,1\}^n \rightarrow \{0,1\}^m$$
 is one-way if:

- f efficiently computable
- For all poly-time \mathcal{A} :

$$\Pr_{x \sim \{0,1\}^n} \left[f(\mathcal{A}(f(x))) = f(x) \right] \le \mathsf{negl}(n)$$

Necessary and **sufficient** for lots of classical cryptography

Are OWFs **necessary** in a quantum world?

Are OWFs **necessary** in a quantum world?

Symmetric-key encryption

- Symmetric-key encryption
- Commitment schemes

- Symmetric-key encryption
- Commitment schemes
- Digital signatures

- Symmetric-key encryption
- Commitment schemes
- Digital signatures
- Publicly-verifiable quantum money

- Symmetric-key encryption
- Commitment schemes
- Digital signatures
- Publicly-verifiable quantum money
- Quantum copy-protected software

- Symmetric-key encryption
- Commitment schemes
- Digital signatures

. . .

- Publicly-verifiable quantum money
- Quantum copy-protected software

Definition (Ji-Liu-Song 2018)

 $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\kappa}}$ is *pseudorandom* if:

- Efficient generation of $|\varphi_k\rangle$ given $k \in \{0,1\}^{\kappa}$
- For all poly-time \mathcal{A} and $T = \text{poly}(\kappa)$: $\Pr_{k \sim \{0,1\}^{\kappa}} \left[\mathcal{A} \left(|\varphi_k\rangle^{\otimes T} \right) = 1 \right] - \Pr_{|\psi\rangle \leftarrow \mu_{\text{Haar}}} \left[\mathcal{A} \left(|\psi\rangle^{\otimes T} \right) = 1 \right] \leq \text{negl}(\kappa)$

Definition (Morimae-Yamakawa 2022) $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\kappa}}$ is single-copy pseudorandom if: \triangleright $\kappa < n$, where n = # qubits • Efficient generation of $|\varphi_k\rangle$ given $k \in \{0, 1\}^{\kappa}$ For all poly-time \mathcal{A} : $\Pr_{k \sim \{0,1\}^{\kappa}} \left[\mathcal{A}\left(|\varphi_k\rangle \right) = 1 \right] - \Pr_{|\psi\rangle \leftarrow \mu_{\text{Haar}}} \left[\mathcal{A}\left(|\psi\rangle \right) = 1 \right] \le \text{negl}(\kappa)$

Suffice for commitments, signatures, multiparty computation, zero-knowledge... [Morimae-Yamakawa 2022, Ananth-Qian-Yuen 2022]

Implied by OWFs [Ji-Liu-Song 2018]

Plausibly weaker assumption than OWFs Suffice for commitments, signatures, multiparty computation, zero-knowledge... [Morimae-Yamakawa 2022, Ananth-Qian-Yuen 2022]

Implied by OWFs [Ji-Liu-Song 2018]

Plausibly weaker assumption than OWFs (?)

There is a **quantum oracle** \mathcal{O} such that:

- **1.** $BQP^{\mathcal{O}} = QMA^{\mathcal{O}}$, and
- **2.** PRSs exist relative to \mathcal{O}

⇒ PRSs without OWFs!

There is a **quantum oracle** \mathcal{O} such that:

- **1.** $BQP^{\mathcal{O}} = QMA^{\mathcal{O}}$, and
- **2**. PRSs exist relative to \mathcal{O}

⇒ PRSs without OWFs!

Limitations:

▶ "Cheating": OWFs can't depend on *O*!

There is a **quantum oracle** \mathcal{O} such that:

- **1.** $BQP^{\mathcal{O}} = QMA^{\mathcal{O}}$, and
- **2.** PRSs exist relative to \mathcal{O}

⇒ PRSs without OWFs!

Limitations:

- ▶ "Cheating": OWFs can't depend on *O*!
- Quantum oracles are weak

There is a **quantum oracle** \mathcal{O} such that:

- **1.** $BQP^{\mathcal{O}} = QMA^{\mathcal{O}}$, and
- **2.** PRSs exist relative to \mathcal{O}

⇒ PRSs without OWFs!

Limitations:

- ► "Cheating": OWFs can't depend on O!
- Quantum oracles are weak
- Not real-world instantiable

This Work

There exists a property of a cryptographic hash function that:

There exists a property of a cryptographic hash function that:

(1) **Suffices** for single-copy PRSs

There exists a property of a cryptographic hash function that:

- (1) **Suffices** for single-copy PRSs
- (2) Holds for a **random oracle**

There exists a property of a cryptographic hash function that:

- (1) **Suffices** for single-copy PRSs
- (2) Holds for a **random oracle**
- (3) Is **independent** of P vs NP in the black box setting

Algorithmica	P = NP PRSs still possible!
Heuristica	$P eq NP but Dist NP \subseteq AvgP$
Pessiland	DistNP ⊈ AvgP but ∄ OWFs
Minicrypt	∃ OWFs but ∄ PKE
Cryptomania	∃ PKE

$H = \{ (f_k, g_k) \}_{k \in \{0,1\}^{\kappa}}$ $f_k, g_k : \{0,1\}^n \to \{1,-1\}$

$$H = \{ (f_k, g_k) \}_{k \in \{0,1\}^{\kappa}}$$
$$f_k, g_k : \{0,1\}^n \to \{1,-1\}$$

$$\xrightarrow{\{0,1\}^n} h \xrightarrow{\{1,-1\}}$$

Given *h*, decide if: (1) *h* uniformly random (2) $\exists k$: *h* correlated with $\hat{f}_k \cdot g_k$

► Forrelation ∈ BQP [Aaronson 2009]

Forrelation ∈ BQP [Aaronson 2009]
Forrelation ∉ PH [Raz-Tal 2018]

- ► Forrelation ∈ BQP [Aaronson 2009]
- ► Forrelation \notin PH [Raz-Tal 2018]
- OR Forrelation ∉ BQP^{PH} [Aaronson-Ingram-K. 2022]

$\begin{aligned} \mathsf{H}_{1} &: |\varphi_{k}\rangle \\ \mathsf{H}_{2} &: |\Phi_{h}\rangle &:= \frac{1}{\sqrt{2^{n}}} \sum_{x} h(x) |x\rangle \text{ for } h \\ & \text{ correlated w/ } \hat{f}_{k} \cdot g_{k} \end{aligned}$

H₃: $|\Phi_h\rangle$ for *h* uniform H₄: $|\psi\rangle$ Haar-random

Open Problems

Multi-copy security? True under a conjecture about *t*-Forrelation

Multi-copy security? True under a conjecture about *t*-Forrelation

Oracle where P = QMA but PRSs exist?

Multi-copy security? True under a conjecture about *t*-Forrelation

Oracle where P = QMA but PRSs exist?

Do single-copy PRSs imply $P \neq PSPACE$?

William Kretschmer https://www.cs.utexas.edu/~kretsch/ kretsch@cs.utexas.edu

The University of Texas at Austin Computer Science

Goal: OR ∘ Forrelation ∉ BQP^{PH} Idea: PH can't be "sensitive" to a single Forrelated block

Goal: OR ∘ Forrelation ∉ BQP^{PH} Idea: PH can't be "sensitive" to a single Forrelated block

