Quantum Cryptography in Algorithmica
 August 14, 2023

William Kretschmer, Luowen Qian, Makrand Sinha, Avishay Tal arXiv:2212.00879

Introduction

Algorithmica

Heuristica
$\mathrm{P} \neq \mathrm{NP}$ but DistNP \subseteq AvgP
DistNP \nsubseteq AvgP but \nexists OWFs
Minicrypt
\exists OWFs but \nexists PKE
Cryptomania \exists PKE

Algorithmica $P=N P$

Heuristica $\quad \mathrm{P} \neq \mathrm{NP}$ but DistNP \subseteq Avg P
Pessiland \quad DistNP \nsubseteq AvgP but \nexists OWFs
Minicrypt \exists OWFs but \nexists PKE
Cryptomania \exists PKE

Definition

$f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is one-way if:

- f efficiently computable
- For all poly-time \mathcal{A} :

$$
\operatorname{Pr}_{x \sim 0,1\}^{n}}[f(\mathcal{A}(f(x)))=f(x)] \leq \operatorname{negl}(n)
$$

Definition

$f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is one-way if:

- f efficiently computable
- For all poly-time \mathcal{A} :

$$
\operatorname{Pr}_{x \sim 0,1\}^{n}}[f(\mathcal{A}(f(x)))=f(x)] \leq \operatorname{negl}(n)
$$

Necessary and sufficient for lots of classical cryptography

Are OWFs necessary in a quantum world?

Are OWFs necessary in a quantum world?

But most tasks still require computational assumptions, even quantumly:

But most tasks still require computational assumptions, even quantumly:
 - Symmetric-key encryption

But most tasks still require computational assumptions, even quantumly:
 - Symmetric-key encryption
 Commitment schemes

But most tasks still require computational

 assumptions, even quantumly:- Symmetric-key encryption
- Commitment schemes
- Digital signatures

But most tasks still require computational

 assumptions, even quantumly:- Symmetric-key encryption
- Commitment schemes
- Digital signatures
- Publicly-verifiable quantum money

But most tasks still require computational assumptions, even quantumly:

- Symmetric-key encryption
- Commitment schemes
- Digital signatures
- Publicly-verifiable quantum money
- Quantum copy-protected software

But most tasks still require computational assumptions, even quantumly:

- Symmetric-key encryption
- Commitment schemes
- Digital signatures
- Publicly-verifiable quantum money
- Quantum copy-protected software

Definition (Ji-Liu-Song 2018)

$\left\{\left|\varphi_{k}\right\rangle\right\}_{k \in\{0,1\}^{k}}$ is pseudorandom if:

- Efficient generation of $\left|\varphi_{k}\right\rangle$ given $k \in\{0,1\}^{k}$
- For all poly-time \mathcal{A} and $T=\operatorname{poly}(\kappa)$:

$$
\operatorname{Pr}_{k \sim(0,1\}^{*}}\left[\mathcal{A}\left(\left|\varphi_{k}\right\rangle^{\otimes T}\right)=1\right]-\operatorname{Pr}_{|\psi\rangle<-\mu \text { thas }}\left[\mathcal{A}\left(|\psi\rangle^{\otimes T}\right)=1\right] \leq \operatorname{neg} \mid(\kappa)
$$

Definition (Morimae-Yamakawa 2022)

$\left\{\left|\varphi_{k}\right\rangle\right\}_{k \in\{0,1\}^{k}}$ is single-copy pseudorandom if:

- $\kappa<n$, where $n=\#$ qubits
- Efficient generation of $\left|\varphi_{k}\right\rangle$ given $k \in\{0,1\}^{k}$
- For all poly-time \mathcal{A} :

$$
\operatorname{Pr}_{k \sim\{0,1\}^{\kappa}}\left[\mathcal{A}\left(\left|\varphi_{k}\right\rangle\right)=1\right]-\operatorname{Pr}_{|\psi\rangle<\mu \text { Haar }}[\mathcal{A}(|\psi\rangle)=1] \leq \operatorname{neg}(\kappa)
$$

- Suffice for commitments, signatures, multiparty
computation, zero-knowledge...
[Morimae-Yamakawa 2022, Ananth-Qian-Yuen 2022]
Implied by OWFs di-Liu-Song 2018]
Plausibly weaker assumption than OWFs
- Suffice for commitments, signatures, multiparty
computation, zero-knowledge...
[Morimae-Yamakawa 2022, Ananth-Qian-Yuen 2022]
Implied by OWFs [ji-Liu-Song 2018]
Plausibly weaker assumption than OWFs (?)

Theorem [K. 2021]

There is a quantum oracle \mathcal{O} such that: 1. $B Q P^{\mathcal{O}}=Q M A^{\mathcal{O}}$, and 2. PRSs exist relative to \mathcal{O}

\Rightarrow PRSs without OWFs!

Theorem [K. 2021]

There is a quantum oracle \mathcal{O} such that: 1. $\mathrm{BQP}^{\mathcal{O}}=Q M A^{\mathcal{O}}$, and
2. PRSs exist relative to \mathcal{O}

\Rightarrow PRSs without OWFs!

Limitations:

- "Cheating": OWFs can't depend on \mathcal{O} !

Theorem [K. 2021]

There is a quantum oracle \mathcal{O} such that: 1. $\mathrm{BQP}^{\mathcal{O}}=Q M A^{\mathcal{O}}$, and 2. PRSs exist relative to \mathcal{O}

\Rightarrow PRSs without OWFs!

Limitations:

- "Cheating": OWFs can't depend on \mathcal{O} !
- Quantum oracles are weak

Theorem [K. 2021]

There is a quantum oracle \mathcal{O} such that: 1. $B Q P^{\mathcal{O}}=Q M A^{\mathcal{O}}$, and
2. PRSs exist relative to \mathcal{O}

\Rightarrow PRSs without OWFs!

Limitations:

- "Cheating": OWFs can't depend on \mathcal{O} !
- Quantum oracles are weak
- Not real-world instantiable

This Work

Theorem [This work]
There exists a property of a cryptographic hash function that:

Theorem [This work]

There exists a property of a cryptographic hash function that: (1) Suffices for single-copy PRSs

Theorem [This work]

There exists a property of a cryptographic hash function that:
(1) Suffices for single-copy PRSs
(2) Holds for a random oracle

Theorem [This work]

There exists a property of a cryptographic hash function that:
(1) Suffices for single-copy PRSs
(2) Holds for a random oracle
(3) Is independent of P vs NP in the black box setting

Algorithmica $P=N P \quad$ PRSs still possible!

Heuristica $P \neq N P$ but DistNP \subseteq Avg P
Pessiland \quad DistNP \nsubseteq AvgP but \nexists OWFs
Minicrypt \exists OWFs but \nexists PKE
Cryptomania \exists PKE

$$
\begin{gathered}
H=\left\{\left(f_{k}, g_{k}\right)\right\}_{k \in\{0,1\}^{\kappa}} \\
f_{k}, g_{k}:\{0,1\}^{n} \rightarrow\{1,-1\}
\end{gathered}
$$

$$
\begin{gathered}
H=\left\{\left(f_{k}, g_{k}\right)\right\}_{k \in\{0,1\}^{\kappa}} \\
f_{k}, g_{k}:\{0,1\}^{n} \rightarrow\{1,-1\} \\
\xrightarrow{\{0,1\}^{n}} h \xrightarrow{\{1,-1\}}
\end{gathered}
$$

Given h, decide if:
(1) h uniformly random
(2) $\exists k: h$ correlated with $\hat{f}_{k} \cdot g_{k}$

$$
\begin{gathered}
H=\left\{\left(f_{k}, g_{k}\right)\right\}_{k \in\{0,1\}^{\kappa}} \\
f_{k}, g_{k}:\{0,1\}^{n} \rightarrow\{1,-1\}
\end{gathered}
$$

Forrelation [Aaronson 2009]

Given $f, g:\{0,1\}^{n} \rightarrow\{1,-1\}$, decide if: (1) f and g are both uniformly random, or (2) \hat{f} is correlated with g

Forrelation [Aaronson 2009]

Given $f, g:\{0,1\}^{n} \rightarrow\{1,-1\}$, decide if: (1) f and g are both uniformly random, or (2) \hat{f} is correlated with g

- Forrelation \in BQP [Aaronson 2009]

Forrelation [Aaronson 2009]

Given $f, g:\{0,1\}^{n} \rightarrow\{1,-1\}$, decide if:
(1) f and g are both uniformly random, or (2) \hat{f} is correlated with g

- Forrelation \in BQP [Aaronson 2009]
- Forrelation \notin PH [Raz-Tal 2018]

Forrelation [Aaronson 2009]

Given $f, g:\{0,1\}^{n} \rightarrow\{1,-1\}$, decide if:
(1) f and g are both uniformly random, or (2) \hat{f} is correlated with g

- Forrelation \in BQP [Aaronson 2009]
- Forrelation $\notin \mathrm{PH}$ [Raz-Tal 2018]
- OR \circ Forrelation $\notin B Q P^{P H}$ [Aaronson-Ingram-K. 2022]
$H_{1}:\left|\varphi_{k}\right\rangle$
$H_{2}:\left|\Phi_{h}\right\rangle:=\frac{1}{\sqrt{2^{n}}} \Sigma_{x} h(x)|x\rangle$ for h
correlated w/ $\hat{f}_{k} \cdot g_{k}$
$H_{3}:\left|\Phi_{h}\right\rangle$ for h uniform
$\mathrm{H}_{4}:|\psi\rangle$ Haar-random

Open Problems

Multi-copy security? True under a conjecture about t-Forrelation

Multi-copy security? True under a conjecture about t-Forrelation

Oracle where $\mathrm{P}=\mathrm{QMA}$ but PRSs exist?

Multi-copy security? True under a conjecture about t-Forrelation

Oracle where $\mathrm{P}=\mathrm{QMA}$ but PRSs exist?

Do single-copy PRSs imply
$\mathrm{P} \neq \mathrm{PSPACE}$?

William Kretschmer

https://www.cs.utexas.edu/~kretsch/ kretsch@cs.utexas.edu

벽 The University of Texas at Austin Computer Science

Goal: OR \circ Forrelation $\notin B Q P^{P H}$ Idea: PH can't be "sensitive" to a single Forrelated block

PH algorithm f

Uniform
Uniform
Uniform
Uniform \quad Uniform

Goal: OR \circ Forrelation $\notin B Q P^{P H}$ Idea: PH can't be "sensitive" to a single Forrelated block

