High-speed QKD: removing the roadblocks for integration and utilisation in real-world networks

Qcrypt, University of Maryland, 2023

Rebecka Sax

Quantum Technologies Group of Hugo Zbinden @ University of Geneva, Switzerland

FACULTÉ DES SCIENCES

3

Deployment of QKD in real-world networks Identifying the roadblocks

- Smooth fusion with existing fibre-optic networks
 - Combining quantum and classical channels in one fibre
- High-speed systems for high secret key rate production

- Low cost, mass-produced, scalable, practical
 - Integrated photonic circuits

Outline

- I. QKD protocol: 3-state time-bin BB84 with 1 decoy state
- II. QKD in network environment
- III. QKD with high secret key rates
- IV. High-speed integrated QKD

I. 3-state time-bin BB84 with 1 decoy state

I. 3-state time-bin BB84 with 1 decoy state

Rusca, D. et al. 'Finite-key analysis for the 1-decoy state QKD protocol', Appl. Phys. Lett. 23 (2018)

Boaron, A. et al. 'Simple 2.5 GHz time-bin quantum key distribution', Appl. Phys. Lett. 23, (2018)

II. QKD in network environment

Motivations

• Wide-spread fibre-optics communications network

J. Rutherford, 'The Territoriality of Pan-European Telecommunications Backbone Networks'

• Expensive to rent/maintain/place a dark fibre

• Merge quantum communication channels with existing classical communication channels

Network integration of QKD system

- Combining quantum and classical channels: Wavelength division multiplexing (WDM)
- Propagation loss in C-band: ~ 0.2 dB/km
 O-band: ~ 0.3 dB/km
- Classical channels most often in C-band (1550 nm)

Image: The Fibre Optic Association

Network integration of QKD system

- Combining quantum and classical channels: Wavelength division multiplexing (WDM)
- Propagation loss in C-band: ~ 0.2 dB/km
 O-band: ~ 0.3 dB/km
- Classical channels most often in C-band (1550 nm)

Channel	Classical	Quantum
Average Power	>1 mW	1 nW

Obstacles in presence of classical channel

- Imperfect isolation
 - Proper filtering using coarse-WDM

- Scattering: Brioullin
 - Separation b/w channels of two DWDM channels

- Scattering: Raman
 - Main contribution to noise!

Raman scattering

3 orders of magnitude higher Raman scattering in C-band than O-band

PhD Thesis, Fadri Grünenfelder, 'Performance, Security and Network Integration of Simplified BB84 Quantum Key Distribution'

Co- and counter-propagation

Raman scattering is isotropic! Fixed classical power

PhD Thesis, Fadri Grünenfelder, 'Performance, Security and Network Integration of Simplified BB84 Quantum Key Distribution'

WDM time-bin QKD

- Classical channel in C-band (1550 nm)
- Quantum channel in O-band (1310 nm)
- Co-propagating scheme

Experimental setup: WDM time-bin QKD Long-distance link

Grünenfelder, F. et al. 'The limits of multiplexing quantum and classical channels: Case study of a 2.5 GHz discrete variable quantum key distribution system' Appl. Phys. Lett. 20 (2021)

Experimental setup: WDM time-bin QKD Realistic link

Grünenfelder, F. et al. 'The limits of multiplexing quantum and classical channels: Case study of a 2.5 GHz discrete variable quantum key distribution system' Appl. Phys. Lett. 20 (2021)

Results

Distance (km)	Extra loss (dB)	Classical power sent (dBm)	Classical power received (dBm)	Secret key rate (bps)
95.5	0	8.9	-12.1	42
51.5	15.0	16.7	-11.8	172

Grünenfelder, F. et al. 'The limits of multiplexing quantum and classical channels: Case study of a 2.5 GHz discrete variable quantum key distribution system' Appl. Phys. Lett. 20 (2021)

Comparisons

• DV systems with quantum channel in the O-band best for medium distance and high classical power

III. High secret key rate QKD

In collab. with:

Motivations

- Encrypted video-conf.*: 6 Mbps
- How high SKRs can our system acheive?

High secret key rate QKD

- Necessary conditions to perform a highrate secret key exchange:
 - 1. Detector with low timing jitter and high efficiency at ultra-high count rates
 - 2. High-rate sifting and readout electronics
 - 3. Fast post-processing as well as the realtime privacy amplification

Experimental setup: High-SKR

Multipixel SNSPD

99/1 (Z/X)

Experimental setup: High-SKR

Grünenfelder, F. et al. 'Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems', Nat. Photon. 17, 422–426 (2023)

Talk: Giovanni Resta, Friday!

Multipixel SNSPD

Resta, V.G. et al., Gigahertz Detection Rates and Dynamic Photon-Number Resolution with Superconducting Nanowire Arrays, Nano Lett. 2023

NB. Scale of x-axes!

Detectors

Grünenfelder, F. et al. 'Fast single-photon detectors and realtime key distillation enable high secret-key-rate quantum key distribution systems', Nat. Photon. 17, 422–426 (2023)

Results

Distance (km) (ULL-SMF)	Sifted key rate (Mbps)	QBER _z (%)	Phi _z (%)	Secret key rate (Mbps)
102.4	7.8	0.3	1.0	3.0
10.0	159.4	0.4	0.8	63.6

Grünenfelder, F. et al., Nat. Photon. 17, 422–426 (2023) Li, W. et al. Nat. Photon. 17, 416–421 (2023)

IV. High-speed integrated QKD

In collab. with:

Integrated photonics

Advantages:

...

low cost, small footprint, mass production, reliable, low power consumption,
Image: Sector Sector

Image: Transmitter

Transmitter – Alice

Fiber-based transmitter

Interferometer, intensity modulator, variable attenuator, DAC, RF-amplifier

Integrated transmitter

Transmitter – Alice

- Based on silicon photonics
- Footprint: 1.1 mm x 4.5 mm

Platform choice

Pros: Small footprint, PIC and EIC, fast modulation

Cons: Cannot integrate laser

Receiver - Bob

- Based on silica
- Fabricated at CNR IFN, Milano (R. Osellame) using femtosecond laser micromachining technique

Platform choicePros: Low loss (3 dB), polarizationinsensitiveCons: Cannot integrate detector,

«large» footprint (8 cm x 6 cm)

Full experimental setup: Integrated QKD

Sax, R. et al. 'High-speed integrated QKD system' Photon. Res. 11, 1007-1014 (2023)

Results: InGaAs/InP detectors

Distance	Raw key rate (kbps)	QBER _z (%)	Phi _z (%)	Secret key rate (kbps)
150 km	18.0	3.6	2.1	2.9
150 km	23.0	3.2	2.1	7.2

Boaron, A. et al. 'Simple 2.5 GHz time-bin quantum key distribution', Appl. Phys. Lett. 23, (2018)

QBER = quantum bit error rate

Phi_z = phase error rate

Sax, R. et al. 'High-speed integrated QKD system' Photon. Res. 11, 1007-1014 (2023)³⁵

Conclusion

- QC in O-band and CC in C-band: possible key generation in a high-loss link
- Record high-SKR QKD at metropolitian and longer distances
- Integrated QKD at long distances with competetive SKRs and low QBERs

Ongoing work

• Integrated QKD: practical prototype!

On behalf of the Quantum Technologies group and IDQ partners in

Geneva:

+ Sylvain El-Khoury

Thank you for your attention!