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▶ Alice chooses a random bit U and encodes it in the phase of a
coherent state.

▶ Bob measures the relative phase between consecutive pulses.
▶ If they see too many errors, they abort the protocol.
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This can be achieved by the generalized entropy accumulation
theorem (GEAT).
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where h is the single-round von Neumann entropy.

Core questions:
Q1 What are M1, . . . ,Mn?
Q2 How to compute h?
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Q1 What are the channels?
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To apply the GEAT we identify: EiRi → Ei.
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Q2 How to compute the single-
round entropy?



Ẽ

E

A

BS

E

S

U

R′

E′

B
R

B

B̃

R

R̃ S̃

B

Λ

We work in an entanglement-based picture: In-
stead of Alice sending |±α⟩S she sends half of
an entangled state:

|ψ⟩US =
1√
2
|0⟩U ⊗ |+α⟩S +

1√
2
|1⟩U ⊗ |−α⟩S ,

and measures U locally to obtain her key bit.

Bob receives a state ρSR from Eve and
performs the phase coherence measurement
discussed previously.

Due to the squashing, we can assume that
Eve’s attack produces qubits.
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⇒ Optimize over all attack channels:

h = inf
Ẽ
H(U |E′R′)ν(Ẽ)

s.t. tr[Γ(i)ν] = γ(i),

where the optimization is over all maps
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and ν(Ẽ) is the state after Alice and Bob
measure (IU ⊗ Ẽ)(|ψ⟩⟨ψ|US).

Can be solved using known optimization
techniques.
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Results and Discussion
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Conclusion



▶ It is possible to prove security of the DPS protocol using the
generalized entropy accumulation theorem.

▶ This requires a non-signalling constraint on Eve’s attack.

▶ Tools from causality can be used to define the channels and
evaluate single-round entropies.

▶ A constraint of this form is necessary if one wishes to reduce
analysis to collective attacks (as the EAT and many other
techniques do).
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