Security of differential phase shift QKD from relativistic principles

Martin Sandfuchs ${ }^{1} \quad$ Marcus Haberland ${ }^{1,2} \quad$ V. Vilasini ${ }^{1}$ Ramona Wolf ${ }^{1}$

${ }^{1}$ Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland
${ }^{2}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam, Germany

August 15, 2023

Setup

Differential phase shift (DPS) QKD

Differential phase shift (DPS) QKD

- Alice chooses a random bit U and encodes it in the phase of a coherent state.

Differential phase shift (DPS) QKD

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.

Differential phase shift (DPS) QKD

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.

Differential phase shift (DPS) QKD

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.

Differential phase shift (DPS) QKD

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.
- If they see too many errors, they abort the protocol.

The goal of a QKD security proof is to show the following statement:

$$
\rho_{K^{l} E} \approx_{\delta} \frac{\mathbb{1}_{K^{l}}}{2^{l}} \otimes \rho_{E}
$$

The goal of a QKD security proof is to show the following statement:

$$
\rho_{K^{l} E} \approx_{\delta} \frac{\mathbb{1}_{K^{l}}}{2^{l}} \otimes \rho_{E}
$$

Using the leftover hashing lemma:

$$
\delta \lesssim 2^{-\frac{1}{2}\left(H_{\min }^{\varepsilon}\left(X^{n} \mid E\right)-l\right)} .
$$

The goal of a QKD security proof is to show the following statement:

$$
\rho_{K^{l} E} \approx_{\delta} \frac{\mathbb{1}_{K^{l}}}{2^{l}} \otimes \rho_{E}
$$

Using the leftover hashing lemma:

$$
\delta \lesssim 2^{-\frac{1}{2}\left(H_{\min }^{\varepsilon}\left(X^{n} \mid E\right)-l\right)} .
$$

\Rightarrow We need a lower-bound on $H_{\text {min }}^{\varepsilon}\left(X^{n} \mid E\right)$.

This can be achieved by the generalized entropy accumulation theorem (GEAT).

This can be achieved by the generalized entropy accumulation theorem (GEAT).

The GEAT provides the bound:

$$
H_{\min }^{\varepsilon}\left(X^{n} \mid E_{n}\right)_{\mathcal{M}_{n} \circ \cdots \circ \mathcal{M}_{1}\left(\rho^{\mathrm{in}}\right)} \geq n h-\mathcal{O}(\sqrt{n}),
$$

where h is the single-round von Neumann entropy.

This can be achieved by the generalized entropy accumulation theorem (GEAT).

The GEAT provides the bound:

$$
H_{\min }^{\varepsilon}\left(X^{n} \mid E_{n}\right)_{\mathcal{M}_{n} \circ \cdots \circ \mathcal{M}_{1}\left(\rho^{\mathrm{in}}\right)} \geq n h-\mathcal{O}(\sqrt{n}),
$$

where h is the single-round von Neumann entropy.
Core questions:
Q1 What are $\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}$?
Q2 How to compute h ?

Q1 What are the channels?

Condition: Eve does not signal from round $i+1$ to round i.

Condition: Eve does not signal from round $i+1$ to round i. Then:

To apply the GEAT we identify: $E_{i} R_{i} \rightarrow E_{i}$.

Q2 How to compute the singleround entropy?

We work in an entanglement-based picture: Instead of Alice sending $| \pm \alpha\rangle_{S}$ she sends half of an entangled state:

$$
|\psi\rangle_{U S}=\frac{1}{\sqrt{2}}|0\rangle_{U} \otimes|+\alpha\rangle_{S}+\frac{1}{\sqrt{2}}|1\rangle_{U} \otimes|-\alpha\rangle_{S},
$$

and measures U locally to obtain her key bit.

We work in an entanglement-based picture: Instead of Alice sending $| \pm \alpha\rangle_{S}$ she sends half of an entangled state:

$$
|\psi\rangle_{U S}=\frac{1}{\sqrt{2}}|0\rangle_{U} \otimes|+\alpha\rangle_{S}+\frac{1}{\sqrt{2}}|1\rangle_{U} \otimes|-\alpha\rangle_{S},
$$

and measures U locally to obtain her key bit.
Bob receives a state $\rho_{S R}$ from Eve and performs the phase coherence measurement discussed previously.

We work in an entanglement-based picture: Instead of Alice sending $| \pm \alpha\rangle_{S}$ she sends half of an entangled state:

$$
|\psi\rangle_{U S}=\frac{1}{\sqrt{2}}|0\rangle_{U} \otimes|+\alpha\rangle_{S}+\frac{1}{\sqrt{2}}|1\rangle_{U} \otimes|-\alpha\rangle_{S},
$$

and measures U locally to obtain her key bit.
Bob receives a state $\rho_{S R}$ from Eve and performs the phase coherence measurement discussed previously.

We work in an entanglement-based picture: Instead of Alice sending $| \pm \alpha\rangle_{S}$ she sends half of an entangled state:

$$
|\psi\rangle_{U S}=\frac{1}{\sqrt{2}}|0\rangle_{U} \otimes|+\alpha\rangle_{S}+\frac{1}{\sqrt{2}}|1\rangle_{U} \otimes|-\alpha\rangle_{S},
$$

and measures U locally to obtain her key bit.
Bob receives a state $\rho_{S R}$ from Eve and performs the phase coherence measurement discussed previously.

Due to the squashing, we can assume that Eve's attack produces qubits.

We work in an entanglement-based picture: Instead of Alice sending $| \pm \alpha\rangle_{S}$ she sends half of an entangled state:

$$
|\psi\rangle_{U S}=\frac{1}{\sqrt{2}}|0\rangle_{U} \otimes|+\alpha\rangle_{S}+\frac{1}{\sqrt{2}}|1\rangle_{U} \otimes|-\alpha\rangle_{S},
$$

and measures U locally to obtain her key bit.
Bob receives a state $\rho_{S R}$ from Eve and performs the phase coherence measurement discussed previously.

Due to the squashing, we can assume that Eve's attack produces qubits.

\Rightarrow Optimize over all attack channels:

$$
\begin{aligned}
h= & \inf _{\tilde{\mathcal{E}}} H\left(U \mid E^{\prime} R^{\prime}\right)_{\nu(\tilde{\mathcal{E}})} \\
& \text { s.t. } \quad \operatorname{tr}\left[\Gamma^{(i)} \nu\right]=\gamma^{(i)}
\end{aligned}
$$

where the optimization is over all maps

and $\nu(\tilde{\mathcal{E}})$ is the state after Alice and Bob measure $\left(\mathcal{I}_{U} \otimes \tilde{\mathcal{E}}\right)\left(|\psi\rangle\left\langle\left.\psi\right|_{U S}\right)\right.$.

\Rightarrow Optimize over all attack channels:

$$
\begin{aligned}
h= & \inf _{\tilde{\mathcal{E}}} H\left(U \mid E^{\prime} R^{\prime}\right)_{\nu(\tilde{\mathcal{E}})} \\
& \text { s.t. } \quad \operatorname{tr}\left[\Gamma^{(i)} \nu\right]=\gamma^{(i)}
\end{aligned}
$$

where the optimization is over all maps

and $\nu(\tilde{\mathcal{E}})$ is the state after Alice and Bob measure $\left(\mathcal{I}_{U} \otimes \tilde{\mathcal{E}}\right)\left(|\psi\rangle\left\langle\left.\psi\right|_{U S}\right)\right.$.

Can be solved using known optimization techniques.

Results and Discussion

Coherent attacks on DPS are stronger than collective attacks!

Conclusion

- It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.
- It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.
- This requires a non-signalling constraint on Eve's attack.
- It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.
- This requires a non-signalling constraint on Eve's attack.
- Tools from causality can be used to define the channels and evaluate single-round entropies.
- It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.
- This requires a non-signalling constraint on Eve's attack.
- Tools from causality can be used to define the channels and evaluate single-round entropies.
- A constraint of this form is necessary if one wishes to reduce analysis to collective attacks (as the EAT and many other techniques do).

Q\&A

