Security of differential phase shift QKD from relativistic principles

Martin Sandfuchs¹ Marcus Haberland^{1,2} V. Vilasini¹ Ramona Wolf¹

¹Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland

²Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam, Germany

August 15, 2023

Alice chooses a random bit U and encodes it in the phase of a coherent state.

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.

- Alice chooses a random bit U and encodes it in the phase of a coherent state.
- Bob measures the relative phase between consecutive pulses.
- If they see too many errors, they abort the protocol.

The goal of a QKD security proof is to show the following statement:

$$\rho_{K^l E} \approx_{\delta} \frac{\mathbbm{1}_{K^l}}{2^l} \otimes \rho_E.$$

The goal of a QKD security proof is to show the following statement:

$$\rho_{K^l E} \approx_{\delta} \frac{\mathbbm{1}_{K^l}}{2^l} \otimes \rho_E.$$

Using the leftover hashing lemma:

$$\delta \lesssim 2^{-\frac{1}{2} \left(H_{\min}^{\varepsilon}(X^n | E) - l \right)}.$$

The goal of a QKD security proof is to show the following statement:

$$\rho_{K^l E} \approx_{\delta} \frac{\mathbbm{1}_{K^l}}{2^l} \otimes \rho_E.$$

Using the *leftover hashing lemma*:

$$\delta \lesssim 2^{-\frac{1}{2} \left(H_{\min}^{\varepsilon}(X^n | E) - l \right)}.$$

 \Rightarrow We need a lower-bound on $H_{\min}^{\varepsilon}(X^n|E)$.

This can be achieved by the generalized entropy accumulation theorem (GEAT).

$$\rho_{E_0}^{\mathrm{in}} \xrightarrow{E_0} \mathcal{M}_1 \xrightarrow{E_1} \mathcal{M}_2 \xrightarrow{E_2} \cdots \xrightarrow{E_{n-1}} \mathcal{M}_n \xrightarrow{E_n}$$

This can be achieved by the generalized entropy accumulation theorem (GEAT).

$$\rho_{E_0}^{\mathrm{in}} \xrightarrow{E_0} \mathcal{M}_1 \xrightarrow{E_1} \mathcal{M}_2 \xrightarrow{E_2} \cdots \xrightarrow{E_{n-1}} \mathcal{M}_n \xrightarrow{E_n}$$

The GEAT provides the bound:

$$H_{\min}^{\varepsilon}(X^{n}|E_{n})_{\mathcal{M}_{n}\circ\cdots\circ\mathcal{M}_{1}(\rho^{\mathrm{in}})} \geq nh - \mathcal{O}(\sqrt{n}),$$

where h is the single-round von Neumann entropy.

This can be achieved by the generalized entropy accumulation theorem (GEAT).

$$\rho_{E_0}^{\mathrm{in}} \xrightarrow{E_0} \mathcal{M}_1 \xrightarrow{E_1} \mathcal{M}_2 \xrightarrow{E_2} \cdots \xrightarrow{E_{n-1}} \mathcal{M}_n \xrightarrow{E_n}$$

The GEAT provides the bound:

$$H_{\min}^{\varepsilon}(X^{n}|E_{n})_{\mathcal{M}_{n}\circ\cdots\circ\mathcal{M}_{1}(\rho^{\mathrm{in}})} \geq nh - \mathcal{O}(\sqrt{n}),$$

where h is the single-round von Neumann entropy.

Core questions:

- Q1 What are $\mathcal{M}_1, \ldots, \mathcal{M}_n$?
- Q2 How to compute h?

Q1 What are the channels?

Condition: Eve does not signal from round i + 1 to round *i*.

Condition: Eve does not signal from round i + 1 to round i. Then:

To apply the GEAT we identify: $E_i R_i \rightarrow E_i$.

Q2 How to compute the singleround entropy?

$$|\psi\rangle_{US} = \frac{1}{\sqrt{2}}|0\rangle_U \otimes |+\alpha\rangle_S + \frac{1}{\sqrt{2}}|1\rangle_U \otimes |-\alpha\rangle_S,$$

and measures U locally to obtain her key bit.

$$\psi\rangle_{US} = \frac{1}{\sqrt{2}}|0\rangle_U \otimes |+\alpha\rangle_S + \frac{1}{\sqrt{2}}|1\rangle_U \otimes |-\alpha\rangle_S,$$

and measures U locally to obtain her key bit.

Bob receives a state ρ_{SR} from Eve and performs the phase coherence measurement discussed previously.

$$\psi\rangle_{US} = \frac{1}{\sqrt{2}}|0\rangle_U \otimes |+\alpha\rangle_S + \frac{1}{\sqrt{2}}|1\rangle_U \otimes |-\alpha\rangle_S,$$

and measures U locally to obtain her key bit.

Bob receives a state ρ_{SR} from Eve and performs the phase coherence measurement discussed previously.

$$\psi\rangle_{US} = \frac{1}{\sqrt{2}}|0\rangle_U \otimes |+\alpha\rangle_S + \frac{1}{\sqrt{2}}|1\rangle_U \otimes |-\alpha\rangle_S,$$

and measures U locally to obtain her key bit.

Bob receives a state ρ_{SR} from Eve and performs the phase coherence measurement discussed previously.

Due to the squashing, we can assume that Eve's attack produces qubits.

$$\psi\rangle_{US} = \frac{1}{\sqrt{2}}|0\rangle_U \otimes |+\alpha\rangle_S + \frac{1}{\sqrt{2}}|1\rangle_U \otimes |-\alpha\rangle_S,$$

and measures U locally to obtain her key bit.

Bob receives a state ρ_{SR} from Eve and performs the phase coherence measurement discussed previously.

Due to the squashing, we can assume that Eve's attack produces qubits.

 \Rightarrow Optimize over all attack channels:

$$\begin{split} h &= \inf_{\tilde{\mathcal{E}}} H(U|E'R')_{\nu(\tilde{\mathcal{E}})} \\ \text{s.t.} \quad \operatorname{tr}[\Gamma^{(i)}\nu] &= \gamma^{(i)} \end{split}$$

where the optimization is over all maps

and $\nu(\tilde{\mathcal{E}})$ is the state after Alice and Bob measure $(\mathcal{I}_U \otimes \tilde{\mathcal{E}})(|\psi\rangle \langle \psi|_{US})$.

 \Rightarrow Optimize over all attack channels:

$$h = \inf_{\tilde{\mathcal{E}}} H(U|E'R')_{\nu(\tilde{\mathcal{E}})}$$

s.t. $\operatorname{tr}[\Gamma^{(i)}\nu] = \gamma^{(i)}$

where the optimization is over all maps

and $\nu(\tilde{\mathcal{E}})$ is the state after Alice and Bob measure $(\mathcal{I}_U \otimes \tilde{\mathcal{E}})(|\psi\rangle \langle \psi|_{US})$.

Can be solved using known optimization techniques.

Results and Discussion

Coherent attacks on DPS are stronger than collective attacks!

Conclusion

It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.

- It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.
- ► This requires a non-signalling constraint on Eve's attack.

- It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.
- ► This requires a non-signalling constraint on Eve's attack.
- Tools from causality can be used to define the channels and evaluate single-round entropies.

- It is possible to prove security of the DPS protocol using the generalized entropy accumulation theorem.
- ► This requires a non-signalling constraint on Eve's attack.
- Tools from causality can be used to define the channels and evaluate single-round entropies.
- A constraint of this form is necessary if one wishes to reduce analysis to collective attacks (as the EAT and many other techniques do).

