

Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance

Yang Liu

Jinan Institute of Quantum Technology

Authors: Yang Liu, Wei-Jun Zhang, Cong Jiang, Jiu-Peng Chen, Chi Zhang, Wen-Xin Pan, Di Ma, Hao Dong, Jia-Min Xiong, Cheng-Jun Zhang, Hao Li, Rui-Chun Wang, Jun Wu, Teng-Yun Chen, Lixing You, Xiang-Bin Wang, Qiang Zhang, and Jian-Wei Pan

QCRYPT 2023

Quick Introduction: Twin-Field (TF-) QKD

Status of QKD (before TF-QKD) Systems

Limited distribution distance in QKD systems

Publication Year

Twin-Field QKD (TF-QKD)

Proposed in 2018, "greatly extending the range of secure quantum communications", and "feasible with current technology".

Status of QKD (before TF-QKD) Systems

Limited distribution distance in QKD systems

Publication Year

Enhancing the TF-QKD distribution distance

Key to realize long-distance TF-QKD

Experimental Setup - Transmittance

Transmittance

- ① Fiber loss: Ultra-Low-Loss Fiber
- 2 **Optical loss**: Software based Phase Estimation, do not need active modulators
- ③ **Detection efficiency**: High efficiency Superconducting Nanowire SPD (SNSPD)

Ultra-Low-Loss Fiber

Transmittance

Ultra-Low-Loss Fiber

- "Pure Silica Core" technology: reducing the doped Ge in the core,
- **Decreased the fictive temperature** in the manufacturing process.
- Large effective area (~125 μm² effective area), reducing nonlinear effect in transmission.

Fiber Type	Single Mode Fiber	Commercial Ultra-Low-Loss	Ultra-Low-Loss Fiber
Attenuation	<0.2 dB/km	<0.165 dB/km	~0.157 dB/km
Atten. 1000 km	200 dB	165 dB	156.5 dB

Experimental Setup – System Noise

System Noise

- ① **Re-Rayleigh Scattering**: Dual-band Phase Estimation
- 2 Raman Scattering: Time-multiplexed Reference light
- ③ **Dark Counts**: Ultra-Low-Noise SNSPD

Ultra-Low-Noise SNSPD

System Noise

Ultra-Low-Noise SNSPD

Coiling the fiber: Filtering long-wavelength (> 2 μm) noise photons,
Bandpass filter (BPF) at 2.2 K: Filtering other blackbody photons.
BPF: centered at 1550 nm, 5 nm bandwidth, 85% transmittance.
DBR based optical cavity: enhancing the detection efficiency.

W. Zhang, et. al., Supercond. Sci. Technol. 31, 035012 (2018).W. Zhang, et. al., Sci. China Phys. Mech. Astron. 60, 120314 (2017).

Ultra-Low-Noise SNSPD

System Noise

Ultra-Low-Noise SNSPD

Coiling the fiber: Filtering long-wavelength (> 2 μm) noise photons,
Bandpass filter (BPF) at 2.2 K: Filtering other blackbody photons.
BPF: centered at 1550 nm, 5 nm bandwidth, 85% transmittance.
DBR based optical cavity: enhancing the detection efficiency.

Channel	Efficiency	
Ch 1	. 60%	
Ch 2	~00%	

Channel	Dark Count Rate
Ch 1	0.014 Hz
Ch 2	0.026 Hz

Note: the DCR fluctuates during the experiment

TFQKD Requires a Phase Reference Pulse

Single Photon Interference with Independent Lasers

① **Ultra-stable Laser**: Stable wavelength reference.

- (2) **Optical Phase-Locked Loop (OPLL)**: Locking λ of independent lasers.
- ③ **Phase Reference Pulse**: Compensate phase fluctuation in the quantum channel.

Re-Rayleigh Scattering Noise in Fiber

System Noise

Re-Rayleigh Scattering

$$P_{srs} = \frac{1}{2} P_{Sl} = \frac{P_0 S^2}{4\alpha} e^{-\alpha l} \left[l + \frac{e^{-2\alpha l}}{2\alpha} - \frac{1}{2\alpha} \right]$$

 Time-Multiplexing: A direct way to multiplex the phase reference light (same path, same λ)
Re-Rayleigh Scattering Noise: Will result in ~10 Hz Noise, thus limit the distribution distance to 600 ~ 700 km. Table: Parameters

 $\alpha = -0.168 dB/km$ S = 3.919×10⁻⁵ Ref = ~2 MHz Noise \approx 14 cps (@650km)

Dual-band stabilization

Dual-band stabilization avoid the Re-Rayleigh Scattering noise

(1) Strong Phase Reference(λ_1): Reduce the phase drift to ~1/1000.

- ② **Dim Phase Reference**($\lambda_2 = \lambda_s$): Stabilize the phase drift with lower intensity.
- ③ WDM: Filtering out Re-Rayleigh Scattering Noise of Strong Phase Reference

Figure: Dual-band phase stabilization

Pittaluga, M., et. al. Nature Photonics 15, 530–535 (2021).

Figure: Phase Drift during 200 ms, λ_1 =1550 nm and λ_2 =1548 nm.

Dual-band stabilization

System Noise

• The main source of noise at the extreme distance.

(1) **WDM**: cannot filter Raman noise at the same wavelength $(\lambda_s \leftarrow \lambda_1)$. (2) **TDM**: Time multiplexing Strong Phase Reference with quantum signal.

Dual-band stabilization with data processing

• Avoid the loss induced by Phase Modulator at Charlie

(1) Calculate φ_r using MinErr Model with 4 state sent.

$$Err(\Delta\varphi) = \sum_{i} p_i \cdot (1 - \cos((\Delta\theta_i + \Delta\varphi)/2)^2)^2 \quad \text{where } \Delta\theta_i = \{0, \pi/2, \pi, 3\pi/2\}$$

2 **Unfold** φ_r assuming phase changes continuously: $\Delta \phi_i - \Delta \phi_{i-1} < 180^\circ$.

③ Direct Estimate φ_s using φ_r : $\phi_s(t) = \phi_r(t) + \phi_s(0) - \phi_r(0)$.

The residual phase is **reduced** by more than **1000 times** compared with free drift, similar to the reported hardware-based dual-band compensation.

Dual-band stabilization with data processing

Avoid the loss induced by Phase Modulator at Charlie

④ **Fine Estimate** φ_s using φ_r : $\phi_s(t) = \phi_r(t) \times \lambda_2/\lambda_1 + \phi_s(0) - \phi_r(0)$. Results in a more precise estimation of Std=4.3° in the 30 s test.

⁽⁵⁾ Determine the **initial phase difference**, using MinErr Model with 4 state sent:

$$Err(\Delta \varphi') = \sum_{i} n_i \cdot (1 - \cos((\Delta \theta_i + \Delta \varphi')/2)^2)^2$$

where n_i the count of dim reference detections with phase difference between strong reference $\Delta \theta_i$.

TF-QKD Feedback System

• Signal arrival time feedback using strong reference

Figure: The rising edge of strong reference

Figure: Measured delay with feedback on

Figure: Relative delay between λ_1 and λ_2

Figure: Measured delay with feedback off

TF-QKD Feedback System

Two Wavelength Polarization Feedback

(1) Adjusted polarization of λ_1 to target value, e.g., 100 kHz at the monitor port,

(2) Minimize detected count rate of λ_2 at the monitor port,

- (3) If the λ_1 counts is higher than expect range, e.g., 75k~300 kHz, the first step starts again,
- (4) Repeating (1)~(3), till λ_2 falls in the target value, e.g., 100 Hz,
- (5) Repeat (1)~ (4) when either λ_1 or λ_2 count rate reaches the limit of expected range.

Figure: Measured polarization drift of λ_1

Figure: Measured polarization drift of λ_2

TF-QKD Feedback System

Local Intensity Feedback

Fraction of the signal is directed to monitor SNSPDs before attenuation.
PID algorithm is used to feedback the bias of the intensity modulators.

"dim phase reference" and quantum signal.

 μ_y and μ_x decoy states.

TF-QKD System & Performance

1002 km SNS-TF-QKD experimental result

Physical Review Letters **130**, 210801 (2023).

Contributed

Experiment:

Yang Liu, Jiu-Peng Chen, Chi Zhang, Wen-Xin Pan, Di Ma, Hao Dong, Teng-Yun Chen, Qiang Zhang, and Jian-Wei Pan

Theory: Cong Jiang, Xiang-Bin Wang

Low-Noise SNSPD:

Weijun Zhang, Jia-Min Xiong, Cheng-Jun Zhang, Hao Li, Lixing You

Low-Loss Fiber:

Rui-Chun Wang, Jun Wu

National Key R&D Program of China

Key R&D Plan of Shandong Province

Taishan Scholar Program of Shandong Province Thank you!