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Quick Introduction: Twin-Field (TF-) QKD
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Twin-Field QKD (TF-QKD)

Overcomes the repeaterless 
secure key rate bounds 

Promises ultra-long 
distribution distance

Lucamarini, et.al., Nature 557, 400–403 (2018).

Key rate resembles 
that of a single quantum repeater

𝑅 ∝ 𝜂

𝑅 ∝ 𝜂Traditional protocol：

TF-QKD protocol：

Longer Distance

Higher Key Rate

Proposed in 2018, “greatly extending the range of secure quantum 
communications”, and “feasible with current technology”.
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Enhancing the TF-QKD distribution distance



Key to realize long-distance TF-QKD

System Noise

Transmittance

Limitation to the ultimate distance Method to improve the performance

Ultra-Low-Loss Fiber

Software based Phase Estimation

Ultra-Low-Noise SNSPD

Dual-band Phase Estimation

Time-multiplexed Reference light



Transmittance

Experimental Setup - Transmittance

① ①
②

③

① Fiber loss: Ultra-Low-Loss Fiber
② Optical loss: Software based Phase Estimation, do not need active modulators
③ Detection efficiency: High efficiency Superconducting Nanowire SPD (SNSPD)



Transmittance

Ultra-Low-Loss Fiber

• “Pure Silica Core” technology: reducing the doped Ge in the core,
• Decreased the fictive temperature in the manufacturing process.
• Large effective area (~125 μm2 effective area), 

reducing nonlinear effect in transmission.

Ultra-Low-Loss Fiber

Fiber Type Single Mode 
Fiber

Commercial 
Ultra-Low-Loss

Ultra-Low-Loss 
Fiber 

Attenuation <0.2 dB/km <0.165 dB/km ~0.157 dB/km

Atten. 1000 km 200 dB 165 dB 156.5 dB



System Noise

Experimental Setup – System Noise

①② ①②

③

① Re-Rayleigh Scattering: Dual-band Phase Estimation
② Raman Scattering: Time-multiplexed Reference light
③ Dark Counts: Ultra-Low-Noise SNSPD



System Noise

Ultra-Low-Noise SNSPD
Ultra-Low-Noise SNSPD

① Coiling the fiber: Filtering long-wavelength (> 2 μm) noise photons,
② Bandpass filter (BPF) at 2.2 K: Filtering other blackbody photons.
BPF: centered at 1550 nm, 5 nm bandwidth, 85% transmittance. 
③ DBR based optical cavity: enhancing the detection efficiency.

①②

③

W. Zhang, et. al., Supercond. Sci. Technol. 31, 035012 (2018). 
W. Zhang, et. al., Sci. China Phys. Mech. Astron. 60, 120314 (2017). 



System Noise

Ultra-Low-Noise SNSPD
Ultra-Low-Noise SNSPD

① Coiling the fiber: Filtering long-wavelength (> 2 μm) noise photons,
② Bandpass filter (BPF) at 2.2 K: Filtering other blackbody photons.
BPF: centered at 1550 nm, 5 nm bandwidth, 85% transmittance. 
③ DBR based optical cavity: enhancing the detection efficiency.

Channel Efficiency

Ch 1
≈60%

Ch 2

Channel Dark Count Rate

Ch 1 0.014 Hz

Ch 2 0.026 Hz

Note: the DCR fluctuates during the experiment



• Single Photon Interference with Independent Lasers

TFQKD Requires a Phase Reference Pulse

① Ultra-stable Laser: Stable wavelength reference.
② Optical Phase-Locked Loop (OPLL): Locking λ of independent lasers. 
③ Phase Reference Pulse: Compensate phase fluctuation in the quantum channel.

Wavelength 
difference (A/B)

Fiber length 
difference (A/B)

①② ②

③



Re-Rayleigh Scattering Noise in Fiber

Figure: Re-Rayleigh Scattering (500 km)

𝛼 = −0.168dB/km
S = 3.919×10!"
Ref = ~2 MHz 
Noise ≈ 14 cps (@650km)

Table：Parameters

① Time-Multiplexing: A direct way to multiplex 
the phase reference light (same path, same λ)
② Re-Rayleigh Scattering Noise: Will result in 
~10 Hz Noise, thus limit the distribution 
distance to 600 ~ 700 km. 

t t

System Noise Re-Rayleigh Scattering



• Dual-band stabilization avoid the Re-Rayleigh 
Scattering noise

Dual-band stabilization

Pittaluga, M., et. al. Nature Photonics 15, 530–535 (2021).

① Strong Phase Reference(λ1): Reduce the phase drift to ~1/1000.
② Dim Phase Reference(λ2= λs): Stabilize the phase drift with lower intensity.
③ WDM: Filtering out Re-Rayleigh Scattering Noise of Strong Phase Reference

Figure: Phase Drift during 200 ms,
λ1=1550 nm and λ2=1548 nm.

Figure: Dual-band phase stabilization



• The main source of noise at the extreme distance.

Dual-band stabilization

① WDM: cannot filter Raman noise at the same wavelength (λs←λ1).
② TDM: Time multiplexing Strong Phase Reference with quantum signal.

Strong Phase Reference: λ1=1548.51 nm

400 ns 600 ns

Dim Phase Reference: λ2=λs=1550.12 nm

40 ms 60 ms

Quantum 
Signal

Dim 
Phase 

Reference

Strong 
Phase 

Reference

Quantum 
Signal

t

t

0.80	Hz

0.75	Hz

0.019	Hz

0.035	Hz

① ②

① ②

System Noise Raman Scattering



• Avoid the loss induced by Phase Modulator at Charlie

Dual-band stabilization with data processing

① Calculate 𝝋𝒓 using MinErr Model with 4 state sent.

② Unfold 𝝋𝒓 assuming phase changes continuously: Δ𝜙! − Δ𝜙!"# < 180∘.
③ Direct Estimate 𝝋𝒔 using 𝝋𝒓:

The residual phase is reduced by more than 1000 times compared with free drift, 
similar to the reported hardware-based dual-band compensation. 

① ②

Unfold

The first 30 ms of 𝜑!, the phase of strong reference

Quantum	signal
≈ 20∘/𝑠

Strong reference:
≈ 22600∘/𝑠

③



• Avoid the loss induced by Phase Modulator at Charlie

Dual-band stabilization with data processing

④ Fine Estimate 𝝋𝒔 using 𝝋𝒓:
Results in a more precise estimation of Std=4.3∘ in the 30 s test. 
⑤ Determine the initial phase difference, using MinErr Model with 4 state sent:

where 𝑛&  the count of dim reference detections with phase difference between strong 
reference Δ𝜃&.  

Fine	Estimation

④

σ=4.3∘

⑤



TF-QKD Feedback System

Figure: The rising edge of strong reference Figure: Relative delay between λ1 and λ2

• Signal arrival time feedback using strong reference

Figure: Measured delay with feedback on Figure: Measured delay with feedback off



TF-QKD Feedback System
• Two Wavelength Polarization Feedback 

Figure: Measured polarization drift of λ1 Figure: Measured polarization drift of λ2

① Adjusted polarization of λ1 to target value, e.g., 100 kHz at the monitor port, 
② Minimize detected count rate of λ2 at the monitor port,
③ If the λ1 counts is higher than expect range, e.g., 75k~300 kHz, the first step starts again,
④ Repeating ①~③, till λ2 falls in the target value, e.g., 100 Hz,
⑤ Repeat ①~④ when either λ1 or λ2 count rate reaches the limit of expected range. 



TF-QKD Feedback System
• Local Intensity Feedback 

Figure: Measured ratio between the 
“dim phase reference” and quantum signal.

Figure: Measured ratio between
μy and μx decoy states.

① Fraction of the signal is directed to monitor SNSPDs before attenuation.
② PID algorithm is used to feedback the bias of the intensity modulators.



Loss: 156.5 dB (0.157dB/km)

TF-QKD System & Performance

Ultra-stable Laser<0.1 Hz

Relative Drift <0.1 Hz

Frequency：1 GHz
Effective：351 MHz

Strong Ref.: ~300 kHz

SNSPD Efficiency：~60%
Dark Count：~0.02 Hz

Figure: SNS-TF-QKD Setup

Data Window：200 ps

Re-Rayleigh Scattering + 

Raman Scattering：<0.01 Hz

Dim Ref.: ~1 kHz

Total	Noise:	𝟓. 𝟒×𝟏𝟎"𝟏𝟐



1002 km SNS-TF-QKD experimental result

R = 5.23×10!" (47.06 kbps)
@202 km (31.6 dB)

Physical Review Letters 130, 210801 (2023). 

R = 8.75×10!'( (0.0031 bps)
@952 km (148.7 dB)

R = 9.53×10!'( (0.0034 bps)
@1002 km (156.5 dB)

R = 1.26×10!" (11.33 kbps)
@297 km (46.2 dB)
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