100Mb s⁻¹ Quantum Key Distribution

Wei Li[†], **Likang Zhang**[†], Hao Tan, Yichen Lu, Sheng-Kai Liao, Jia Huang, Hao Li, Zhen Wang, Hao-Kun Mao, Bingze Yan, Qiong Li, Yang Liu, Qiang Zhang, Cheng-Zhi Peng, Lixing You, Feihu Xu & Jian-Wei Pan

University of Science and Technology of China

W. Li et al., Nat. Photon. 17, 416-421 (2023)

Outline

- High-rate QKD: background and challenges
- Our 100 Mb/s BB84 system
 - High-speed laser source
 - Low-error modulator
 - High-speed and high-efficiency SNSPD
 - High-throughput postprocessing
- Summary & Outlook

Why we need high key rate?

Current status of key rates

- Higher key rate: a practicality challenge
- High-rate QKD are mostly based on BB84, high-dimensional and continuous-variable protocol

Highest **real-time** secret key rate

13.7 Mbps @ 2 dB

High-dimensional protocol

[1]N. T. Islam et al., Sci. Adv. 3, e1701491 (2017).

BB84 protocol

[2]Z. Yuan et al., J. Light. Technol. 36, 3427 (2018).

Continuous-Variable protocol

[3]Heng Wang et al., Opt. Express 28, 32882-32893 (2020)

Technical challenges

(\mathbf{x})

High-speed Laser

High pulse rate and phaserandomized light pulses

High-speed DFB laser diode

with high-amplitude narrowpulse driving signals

High-speed Low-error Modulation

High-speed modulation signal tends to increase QBER due to limited bandwidth and crosstalk

Solutions

Silicon photonic transmitter featuring high-bandwidth and stable modulation with DC-coupled highspeed driving signals

High-count-rate High-efficiency Detector

SPAD : High speed *but* limited efficiencySNSPD : High efficiency *but* limited count rate

Multi-pixel SNSPD

with high speed and high efficiency

System setup

- 1-decoy 4-state efficient BB84 protocol
- 2.5-GHz random polarization modulation with
 0.4% QBER on a silicon photonic transmitter
- 8-pixel SNSPD detect 552M photons with 62% efficiency
- 344 Mbps postprocessing throughput
- Time synchronization and polarization compensation

Light pulse generation

[1]E. H. Bottcher et al., Journal of Applied Physics 63, 2469 (1988)

Silicon photonic transmitter

Optoelectronic packaging:

- Airtight sealing
- 8 IO fiber optic arrays
- 3 RF + 26 DC connectors
- Packaging TEC

Components:

- One intensity modulator
- One polarization modulator
- Three cascaded adjustable attenuators

Polarization modulation

Bandwidth ~kHz, V_{π} ~1V

Plasma dispersion effect Bandwidth ~GHz, V_{π} ~5V

Path to polarization converter

Polarization extinction ratio

- Refractive index and absorption rate affected by carrier concentration
- Polarization extinction ratio simulation with phase-dependent loss (2 dB)
- 23.7 dB average extinction ratio

30

Extinction ratio (dB)

C

-30

• 0.4% average bit error rate

8-pixel SNSPD

- Overall efficiency ~ 80%
- Total dark count ~ 100Hz

- Recovery time < 1 ns
- Maximum count rate ~ **340 Mcps**

Scanning electron microscope image of 8-pixel SNSPD

Time skew and compensation

Cascade information reconciliation

- High throughput, high reconciliation efficiency Cascade error correction based on CPU platform
- When QBER is 1%, the throughput is 570Mbps and the reconciliation efficiency is 1.04

Why Cascade?

- Good QBER fluctuation adaptability
- Better performance when QBER is low
- Less computational resource

[1] H.-K. Mao et al., Opt. Quantum Electron. 54, 163 (2022).

MMH-MH privacy amplification

The throughput comparison between MMH-MH

(multilinear-modular-hashing and modular arithmetic hashing) privacy amplification scheme and existing schemes ^[1].

- Large block size, high speed MMH-MH privacy amplification based on CPU platform
- When the block size is 10⁸, the processing speed is 140 Mbps per CPU thread

Why MMH-MH?

- Higher processing speed
- Larger block size
- Large integer multiplication

Result: postprocessing speed and secret key rate

- High-speed postprocessing algorithm based on CPU platforms
- An enhanced Cascade-reconciliation algorithm and a hybrid hash-based privacy-amplification algorithm
- An average throughput of 344.3Mb/s

115.8 Mbps@10 km

Distance (km)

100

50

Ref. ¹²

10⁵

0

Result: system robustness

- Time synchronization based on Sync laser and WDM
- Polarization compensation based on calibration pulses
- Stable over 50 km standard fibres for 50 hours

10¹ 10⁰ 0 50 100 150 200 250 300 350 Distance (km)
The longest distance (328 km) of fibre channel in polarization-encoding QKD systems

Review & Outlook

Table 1 | A list of high-rate QKD experiments

Reference	Protocol	CR	QBER	DE	Detector	Loss	SKR	PP
		(GHz)	(%)	(%)		(dB)	(Mbs⁻¹)	
Lucamarini et al. ⁸	Decoy BB84	1	4.26	20	InGaAs	7.0	2.20	No
Yuan et al. ⁹	Decoy BB84	1	3.0	31	InGaAs	2.0ª	13.72	Yes
Grünenfelder et al. ¹²	Decoy BB84	5	1.9	80	SNSPD	20.2	0.39	No
Islam et al. ¹⁰	High dimension	2.5	4.0	70	SNSPD	4.0ª	26.2	No
Wang et al. ⁴⁰	Gaussian CV	0.1	N/A	56	BHD	5.0	1.85	No
This work	Decoy BB84	2.5	0.61	78	SNSPD	2.2	115.8	Yes

CR, clock rate; DE, detector efficiency; PP, post-processing; CV, continuous variable; BHD, balance homodyne detector. *Emulated attenuation, fibre channels otherwise.

Check for update

One order increase of the real-time secret key rate capacity^[1]

communications

physics

ARTICLE

https://doi.org/10.1038/s42005-022-00941-z OPEN

Sub-Gbps key rate four-state continuous-variable quantum key distribution within metropolitan area

Heng Wang [®] ¹, Yang Li¹, Yaodi Pi¹, Yan Pan¹, Yun Shao¹, Li Ma¹, Yichen Zhang [®] ², Jie Yang¹, Tao Zhang¹, Wei Huang¹[™] & Bingjie Xu^{1™}

Roads to higher key rate (1 Gbps and beyond)

- Faster light sources, modulation, detectors, postprocessing
- Wavelength division multiplexing
- CV-QKD and HD-QKD protocols