

# Experimental cheat-sensitive quantum weak coin flipping



Simon NEVES

LIP6 - QI team, Sorbonne Université

18th of August 2023













<u></u>

### **The Game**







### **The Game**



Alice





Bob





Alice









Alice



Head

**Preferred outcome** 









7

### **Important Cryptographic Primitive**

• Multiparty computation





8

### **Classical Solutions**





### **Quantum Protocol**

#### PHYSICAL REVIEW A 102, 022414 (2020)

#### Quantum weak coin flipping with a single photon

Mathieu Bozzio ●,<sup>1,2</sup> Ulysse Chabaud,<sup>1</sup> Iordanis Kerenidis,<sup>3</sup> and Eleni Diamanti ●<sup>1</sup> <sup>1</sup>Sorbonne Université, CNRS, LIP6, 4 Place Jussieu, F-75005 Paris, France <sup>2</sup>Institut Polytechnique de Paris, Télécom Paris, LTCI, 19 Place Marguerite Perey, 91129 Palaiseau, France <sup>3</sup>Université de Paris, CNRS, IRIF, 8 Place Aurélie Nemours, 75013 Paris, France

(Received 20 February 2020; accepted 30 July 2020; published 19 August 2020)

Weak coin flipping is among the fundamental cryptographic primitives which ensure the security of modern communication networks. It allows two mistrustful parties to remotely agree on a random bit when they favor opposite outcomes. Unlike other two-party computations, one can achieve information-theoretic security using quantum mechanics only: both parties are prevented from biasing the flip with probability higher than  $1/2 + \epsilon$ , where  $\epsilon$  is arbitrarily low. Classically, the dishonest party can always cheat with probability 1 unless computational assumptions are used. Despite its importance, no physical implementation has been proposed for quantum weak coin flipping. Here, we present a practical protocol that requires a single photon and linear optics only. We show that it is fair and balanced even when threshold single-photon detectors are used, and reaches a bias as low as  $\epsilon = 1/\sqrt{2} - 1/2 \approx 0.207$ . We further show that the protocol may display a quantum advantage over a few-hundred meters with state-of-the-art technology.

DOI: 10.1103/PhysRevA.102.022414



### **Quantum Protocol**



Cheat-Sensitivity = Quantum advantage!



### **Quantum Protocol**







### **Quantum Protocol**



### **Quantum Protocol**



### **Quantum Protocol**



### **Quantum Protocol**



### **Quantum Protocol**



**Alice Wins** 

### **Quantum Protocol**



### **Quantum Protocol**

#### Experimental Implementation



#### Alice is Sanctioned



### **Quantum Protocol**

#### Experimental Implementation



**Bob is Sanctioned** 

### **Quantum Protocol**



### **Quantum Protocol**

Requirements

When players are **honest**:

• Minimize P(Abort)



## **Experimental Implementation**

Switch & Delay



400ns reaction time



### **Experimental Implementation** *Switch & Delay*



2x 300m fiber spools



# **Experimental Implementation**

Switch & Delay



> 300m fibered interferometer



### **Experimental Implementation**

Noise Recording - Spools Insulation 🔳





### **Results with Honest Players**

**Outcomes Probabilities VS Communication Distance** 



Quantum advantage!

### Possible Cheating Strategies



Quantum advantage!

### Possible Cheating Strategies



Quantum advantage!

### Possible Cheating Strategies



Dishonest Bob



**Dishonest Alice** 





#### nature communications

Article

https://doi.org/10.1038/s41467-023-37566-x

9

### Experimental cheat-sensitive quantum weak coin flipping

| Received: 9 November 2022       | Simon Neves ©1⊠, Verena Yacoub <sup>1</sup> , Ulysse Chabaud © <sup>2,3</sup> , Mathieu Bozzio © <sup>4</sup> ⊠,<br>Iordanis Kerenidis <sup>5</sup> & Eleni Diamanti ©1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Accepted: 22 March 2023         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Published online: 03 April 2023 | As in modern communication notworks the convity of question notworks will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Check for updates               | As in modern communication networks, the security of quantum networks win<br>rely on complex cryptographic tasks that are based on a handful of funda-<br>mental primitives. Weak coin flipping (WCF) is a significant such primitive<br>which allows two mistrustful parties to agree on a random bit while they favor<br>opposite outcomes. Remarkably, perfect information-theoretic security can<br>be achieved in principle for quantum WCF. Here, we overcome conceptual and<br>practical issues that have prevented the experimental demonstration of this<br>primitive to date, and demonstrate how quantum resources can provide cheat<br>sensitivity, whereby each party can detect a cheating opponent, and an honest<br>party is never sanctioned. Such a property is not known to be classically<br>achievable with information-theoretic security. Our experiment implements a<br>refined, loss-tolerant version of a recently proposed theoretical protocol and<br>exploits heralded single photons generated by spontaneous parametric down<br>conversion, a carefully optimized linear optical interferometer including beam<br>splitters with variable reflectivities and a fast optical switch for the verification<br>step. High values of our protocol benchmarks are maintained for attenuation<br>corresponding to several kilometers of telecom optical fiber. |  |  |  |



### Acknowledgement



Verena Yacoub



Ulysse Chabaud



Mathieu Bozzio



Iordanis Kerenidis



Eleni Diamanti



### **Pump Spectrum**





A Source of Entangled Photons

### **Photon Pair Spectral State**





### **Photon Spectral Filtering**





### **Full Setup**





### **Detection Efficiencies**

| Notation               | Path                                                            | x | y | z | S | Efficiency        |
|------------------------|-----------------------------------------------------------------|---|---|---|---|-------------------|
| $\eta^s_A$             | $x \rightarrow \text{switch} \rightarrow D_A$                   | 1 |   |   | 1 | $0.315\pm0.008$   |
| $\eta_B^{\mathcal{Y}}$ | $x \to y \to D_B$                                               | 0 | 0 |   |   | $0.303\pm0.008$   |
| $\eta_A^{V_1}$         | $x \rightarrow \text{switch} \rightarrow z \rightarrow D_{V_1}$ | 1 |   | 1 | 0 | $0.231 \pm 0.008$ |
| $\eta_A^{V_2}$         | $x \rightarrow \text{switch} \rightarrow z \rightarrow D_{V_2}$ | 1 |   | 0 | 0 | $0.219\pm0.008$   |
| $\eta_B^{V_1}$         | $x \to y \to z \to D_{V_1}$                                     | 0 | 1 | 0 |   | $0.184 \pm 0.008$ |
| $\eta_B^{V_2}$         | $x \to y \to z \to D_{V_2}$                                     | 0 | 1 | 1 |   | $0.175\pm0.008$   |



### **Fairness & Correctness**

$$\mathcal{F} = 1 - \left| \frac{\mathbb{P}_h(A. \text{ wins}) - \mathbb{P}_h(B. \text{ wins})}{\mathbb{P}_h(A. \text{ wins}) + \mathbb{P}_h(B. \text{ wins})} \right| \qquad \qquad \mathcal{C} = 1 - \frac{\mathbb{P}_h(A. \text{ sanctioned}) + \mathbb{P}_h(B. \text{ sanctioned})}{\mathbb{P}_h(A. \text{ wins}) + \mathbb{P}_h(B. \text{ wins})}$$





### **Reflectivities, Honest Players**





### **Reflectivities, Honest Players**

**Theoretical Formulas** 

$$x_{h} = \left[1 + \frac{\eta_{A}^{V_{1}}}{\eta_{B}^{V_{1}}} + \frac{\eta_{A}^{V_{1}}}{\eta_{B}^{y}}(1+v)\right]^{-1}$$
$$y_{h} = \left[1 + \frac{\eta_{B}^{V_{1}}}{\eta_{B}^{y}}(1+v)\right]^{-1}$$
$$z_{h} = \frac{1}{2}$$

