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Certification Problem
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e Lossy, transmissivity te(p)
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Certification Problem
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The Protocol

Repeat N times
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The Protocol
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The Protocol

Violation of Bell-CHSH inequality?
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@ (Ao Bo) + (A1 Bo) + (A1B1) — (AgB1)| =2V2 —¢ @@

Alice Self-testing: Bob
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The Protocol

@ [(AoBo) + (A1Bo) + (A1 B1) — (AgB1)| = 2V2 — € 9

Violation of Bell-CHSH inequality?
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Alice Self-testing: if € < 1 then |¢o) ~ |4) Bob

%f::—‘:::’/ﬁ,’ Success!

/00 — /07, (with high proba)
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The Protocol

Violation of Bell-CHSH inequality?

(Ao Bo) + (A1 Bo) + (A1B1) — (AgB1)| =2V2 —¢ @@

Alice if e < 1 then ‘gbO} ~ |(I>+> Bob
- Device-independent -
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The Protocol

Violation of STEERING inequality?

[{AoBo) + (A1B1)| =2 — e @

Alice |f e < 1 then |¢o) = [P4)  Bob

Semi device-independent \

Trusted
Unnikrishnan, A., & Markham, D. (2020). Authenticated teleportation and verification in a noisy network. Physical Review A, 102(4), 042401.
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Protocol Security
Inspiration

Sekatski, P., Bancal, J. D., Wagner, S., & Sangouard, N. (2018). Certifying the building blocks of
guantum computers from Bell’s theorem. Physical review letters, 121(18), 180505.

'\

> Assumptions lifted
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Protocol Security
Main Ideas

1. Measurement breaks entanglement & quantum correlations

)

No violation of Bell inequalities!
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Protocol Security
Main Ideas

2. Entangled states “contain” all quantum states
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Protocol Security
Main Ideas

If the channel behaves well on a maximally-entangled
state, it does on everything!

Channel’s Transmissivity
Ds(€,I) < 2sin (arcsin(Dm 4+ arcsin Dout)

/ \ N\

<> Channel Quality < Input Probe <> Output Probe
State Quality State Quality

58

)



Experimental Certification of Quantum Transmission via Bell’s Theorem 59

New Quantum Channels
Fundamental Results

Extended Process Inequality
Lossless Channels Lossy Channels

D(é’[p],é’[g]) < D(pv U) —> - D(pouta Uout) < D(/Oina O'm)

Channel Distances J and ¢

Dj(&1,E) < Dy(&1,E) <dimH -Dy(&,E)

7P

— Also valid for sine distance C = /1 — F
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Experimental Implementation
Proof of Principle

Alice’s polarization analyzer

Dichroic

W
¢i ( VOA -}
» f > : [
kQuantum ChanneIJ 3 )
2\
PPKTP/é// Bob’s polarization analyzer
§ ] Trusted coupling
losses h |
Entangled-Photon  Trysted Probe States Randomized bases 1Hz

Source = 99.2% Fidelity



Performances
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Honest but Lossy Channel

Trusted coupling

1.0 ————x— / o o ' / losses
| E(®;,®,) via tomography Coupling losses

= Channel (untrusted)

X
b

Trusted Loss )\,

0.2 .
Y 0.526 0.2
: t 04 A0
0.0 i i . i .
0.20 0.25 0.30 0.35 0.40 0.45

Measured Transmission \
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Dishonest Channel

Attempt to disrupt the information: random bit/phase flip
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Inspiration

PHYSICAL REVIEW LETTERS 121, 180505 (2018)

PHYSICAL REVIEW A 100, 032314 (2019)

Certifying the Building Blocks of Quantum Computers from Bell’s Theorem

Pavel Sekatski,"*" Jean-Daniel Bancal,"" Sebastian Wagner," and Nicolas Semgouurdl
'Quantum Optics Theory Group, Universitiit Basel, Klingelbergstrafie 82, CH-4056 Basel, Switzerland
Institut fiir Theoretische Physik, Universitdt Innsbruck, Technikerstrafie 21a, A-6020 Innsbruck, Austria

® (Received 23 February 2018; published 2 November 2018)

Bell’s theorem has been proposed to certify, in a device-independent and robust way, blocks either
producing or measuring quantum states. In this Letter, we provide a method based on Bell’s theorem
to certify coherent operations for the storage, processing, and transfer of quantum information. This
completes the set of tools needed to certify all building blocks of a quantum computer. Our method
distinguishes itself by its robustness to experimental imperfections, and so could be used to certify that
today’s quantum devices are qualified for usage in future quantum computers.

DOI: 10.1103/PhysRevLett.121.180505

Authenticated teleportation with one-sided trust

Anupama Unnikrishnan®' and Damian Markham?
!Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
2LIP6, CNRS, Sorbonne Université, 75005 Paris, France

‘!) (Received 7 May 2019; published 10 September 2019)

We introduce a protocol for authenticated teleportation, which can be proven secure even when the receiver
does not trust his or her measurement devices, and which is experimentally accessible. We use the technique of
self-testing from the device-independent approach to quantum information, where we can characterize quantum
states and measurements from the exhibited classical correlations alone. First, we derive self-testing bounds for
the Bell state and Pauli oy, 07 measurements, that are robust enough to be implemented in the laboratory. Then,
we use these to determine a lower bound on the fidelity of an untested entangled state to be used for teleportation.
Finally, we apply our results to propose a protocol for one-sided device-independent authenticated teleportation
that is experimentally feasible in both the number of copies and fidelities required. This can be interpreted as a
practical authentication of a quantum channel, with additional one-sided device independence.

DOI: 10.1103/PhysRevA.100.032314
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Fair Sampling Assumption

g\ /\/q n(0) _’MOBM
p—{na()}-{ B,
Y n(1)}>M7,
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Certification Bound

F(p,,pi)=1-4-sin® (arcsin(Ci/Tx) +arcsin v af(e,K) + Ax)

_ 1 N+l
Average Quantum Channel: & = Erib_1
N+1 k; e

Po=(Eio®Dp;t(Ep;)

7P
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Epalpl=(1=p)X1=q)p+p(1-XpX +pqYpY +(1-p)qZpZ
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Channel Theory

Theorem 5.2 (Extended Processing Inequality). Let £ be probabilistic quan-
tum channel (CPTD). For any input states p; and o;, the following inequality
holds for the sine distance C(p,0)=/1—-F(p,0), and the trace distance D:

C(pi,Ui)Et-C(po,Uo), (5.7)
D(p;,a;)=t:D(p,,q,), (5.8)

where p, = E[pil/t€|p;) and o, = Elo;1/t(E|o;) are the output states of the

channel, and t =t(E|p;) or t =t(E|0;) is the channel’s transmissivity.

77
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Channel Theory

Theorem 5.3 (Channels’ Metrics Equivalence). For any probabilistic channel
&1, and any &9 that is proportional to a deterministic channel (CPTP map),
both acting on L (HE), the following inequalities hold:

Ci(€1,E3)=Co(E1,E9) =dim H x C j(E1,E9), (5.34)
Dj(€1,E£9) =D(E1,E2)<dimH x D j(E1,E9). (5.35)

78
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Channel Theory

Lemma 5.2. For any pure state p € L(F#%?) and any pair of probabilistic
quantum channels £1 and E9 both acting on L () we have:

x-D(p1,p2)<dimH xDj(E1,E9), (5.36)
x-Clpi1,p2)=dimH xC; (E1,E9), (5.37)

for any x < max| tf(gc‘ﬁ(lg)j), t(tgf(lif)j)], and with pp =(Ep @ D)[pl/t(EL|p).
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New Quantum Channels
Fundamental Results

Equivalence Class

E=8—=Ex¢&
<—> Same output statesand g X Tgr

Choi-Jamiotkowski distance: D ; (&7, &)
Diamond distance: D, (&1, E2)

80
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Channel and Teleportation

BSM

/Pz'
Bob
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Channel and Teleportation
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State Characterization
Density Operator

Fidelity to maximally-entangled state:
F(p, \Ij.;_) = <\Ij+ |p|\IJ+> = 99.32% + 0.05%
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