Kwiat Quantum Information Group

Quantum Key Distribution Links between Mobile Platforms

QCRYPT 2023

Andrew Conrad¹, Samantha Isaac², Roderick Cochran³, Daniel Sanchez-Rosales³, Timur Javid¹, Shuen Wu^{1,2}, Prof. Daniel Gauthier³, Prof. Paul Kwiat^{1,2}

¹Department of Electrical Engineering, University of Illinois Urbana-Champaign (UIUC), Urbana, IL ²Department of Physics, Illinois Quantum Information Science & Technology Center (IQUIST) University of Illinois Urbana-Champaign (UIUC), Urbana, IL ³Department of Physics, The Ohio State University, Columbus, OH

Outline

- Motivation
- System Overview
- Results
- Next Steps

Motivation

Mobile Quantum Network

Future Quantum Internet

- <u>Core Pillars</u>: Secure communication, distributed sensor networks, distributed quantum computing
- Many QKD efforts are focused on fixed fibers, or very long free-space links
- Mobile Quantum Links can extend the benefits of the future quantum internet for humans on the go:
 - Drones, cars, planes, satellites, buildings, etc.
- Prior mobile QKD links:
 - satellite-to-ground [1]
 - ground-to-airplane [2]
 - airplane-to-ground [3]
 - drone-to-ground [4]
 - stationary ground-to-moving-vehicle [5]

This image was generated with the assistance of AI

- [1] Liao, et al. "Satellite-relayed intercontinental quantum network." PRL 120.3 (2018): 030501.
- [2] Pugh, et al. "Airborne demonstration of a quantum key distribution receiver payload." Quantum Science and Technology 2.2 (2017): 024009.
- [3] Nauerth, et al. "Air to ground quantum key distribution." Quantum Communications and Quantum Imaging X. Vol. 8518. SPIE, 2012.
- [4] Tian, et al. "Drone-based quantum key distribution." arXiv preprint arXiv:2302.14012 (2023).
- [5] Bourgoin, et al. "Free-space quantum key distribution to a moving receiver." Opt. Exp. 23.26 (2015): 33437.

Free-Space Quantum Network

Free-Space Quantum Network

System Overview

System Design

System Overview:

- Quantum Transmitter (Alice)
 - Quantum Key Distribution (QKD) source:
 - Resonant cavity LED
 - Decoy state
 - Polarization encoded
 - Custom optics benches
- Quantum Receiver (Bob)
 - Single-Photon Detectors (SPCM-AQ4C)
 - FPGA-based Time-Tagger
 - Qubit-based Time Synchronization (Postprocessing)
- Pointing, Acquisition, and Tracking (PAT) system
- Mobile Platforms:
 - Drone
 - Car

Image Courtesy Timur Javid

Modular Design

Modular Design:

- Our QKD system shares no resources with host mobile platform
 - Power
 - Control
 - Communication
- Single quick-release connection with drone

 → Place QKD transmitter (receiver) on other platforms

(*e.g.,* vehicle) with no required hardware changes

QKD Source (Resonant Cavity LEDs)

Roithner LaserTechnik

RC650-TO46FW

- Decoy State Quantum Key Distribution (QKD)
- Resonant Cavity LED Source
- Encode in Polarization Degree of Freedom (DoF)
- Signal + 2 Decoy Intensities
- FPGA-based Hardware True RNG
- 3-State protocol:
 - Signal Basis $|R\rangle/|L\rangle$
 - Error Checking $|H\rangle$

 <u>Spectral Overlap</u>: 94.6% for all states, using 1-nm narrowband filter (Andover 656FS02-12.5)

 <u>Temporal Overlap</u>: 97.1% for all states, after calibrating FPGA phase-locked loops

• **Spatial Overlap**: achieved using single-mode fiber (SMF)

PAT Subsystem (Course Adjustment)

Outer-Control Loop Calibration

- Initial Pointing, acquisition, and course pointing
- IR Beacon/IR Camera
- Image processing to identify location in camera's reference frame
- Feedback Control

• Tilt RMS Error = 0.0263°

Gimbal Jitter Specification = 0.02°

PAT Subsystem (Fine Adjustment)

PAT Subsystem (Fine Adjustment)

- Co-propagating laser beacons
 - Transmitter: 705-nm beacon
 - Receiver: 520-nm beacon
- Fast Steering Mirrors + Position Sensitive Diode (PSD)
- Senses incoming beacon beam Angle of Arrival (AoA)
- Raspberry Pi single-board computer
- Local (no PAT communication between drones)

Fast Steering Mirrors (Model LR-17)

-200 L

5

10

15

20

25

Time (Seconds)

30

35

40

45

Results

Air-to-Air Classical Locking

Drone Platform

- Alta 8 Pro Drone
- 20 lbs payload capacity
- Two 10,000 mA-hr Lithium Polymer Batteries

System Characterization

- Classical Air-to-Air Locking into multimode fiber
- Average 2.25 dB Channel Loss (60% transmission)
- 10-meter distance

Image Courtesy Timur Javid

Drone Air-to-Air QKD Video

Drone Air-to-Air QKD Flights (Nov 2nd, 2022)

Air-to-Air QKD Setup

- Both drones hovering
- 10-meter distance between drones
- Altitude ~5 meters above ground

Image Courtesy Timur Javid

Quantum Transmission

- Average QBER = 2.9% (R/L Basis), 3.0% (H/V Basis)
- ^{1st} demonstration of drone-to-drone QKD
- Collaborating with Lütkenhaus group to develop tailor-made finite key analysis

UNIVERSITY OF

WATERLOO

10 6 6 6 6 6 7 10 10 150 200 250 100 150 100 150 200 250

	Flight #1	Flight #2	Flight #3
QBER (R/L)	2.0%	1.8%	5.0%
QBER (H/V)	3.6%	3.1% 2.4%	
Mean Photon Number μ	0.78	0.78 0.73	

Drone-to-Vehicle Results

Air-to-Car Setup

- Drone flying parallel to moving car
- Speeds up to 10 mph
- Transmitter on drone, receiver on car

Classical Transmission

- Average coupling efficiency 38% into multimode fiber **QKD Transmission**
- Average QBER = 6.4% (R/L Basis), 3.0% (H/V Basis)

Image Courtesy Timur Javid

Vehicle-based Quantum Networking

Car-to-Car Setup

- Transmitter and receiver in separate cars
- Payloads are placed in car's back seat
- Speeds up to 10 mph

Transmitter

Receiver

Classical Transmission

 Average classical coupling efficiency 55% into multimode fiber

70 mph Vehicle-to-Vehicle Quantum Transmission

Car-to-Car Quantum Setup

- 70 mph
- Interstate Highway (I-57)
- Outer-Control Loop only (Near-IR Beacon)
- No alignment lasers
- Attenuated laser quantum source
- Coupled into multi-mode and single-mode fiber
- Achieved 70 mph 28.6 dB SNR into multimode fiber and 17.4 dB SNR into single-mode fiber
- We believe this is the first demonstration of a car-to-car quantum link on public highway

Image Courtesy Google Earth

70 mph Vehicle-to-Vehicle Quantum Transmission

70 mph Car-to-Car into Multimode Fiber

Multimode Fiber

- Mean Signal = 10,465,380 counts/sec
- Mean Background = 14,440 counts/sec
- Mean Signal-to-Noise (SNR) = 28.6 dB

Single-Mode Fiber (SMF)

- SMF needed for quantum teleportation, entanglement swapping, etc.
- Mean Signal = 97,080 counts/sec
- Mean Background = 1,730 counts/sec
- Mean Signal-to-Noise (SNR) = 17.4 dB

Summary

Summary

<u>Summary</u>

- Drone-to-Drone QKD link
 - Average QBER: 2.9% (R/L Basis), 3.0% (H/V Basis)
 - 60% mean classical coupling efficiency
 - 1st known demonstration
- Drone-to-Car QKD link
 - Average QBER = 6.4% (R/L Basis), 3.0% (H/V Basis)
 - 38% mean classical coupling efficiency
 - 1st known demonstration
- Car-to-Car Quantum link
 - 70 mph on highway
 - 28.6 dB SNR into multimode fiber
 - 17.4 dB SNR into single-mode fiber
 - 1st known demonstration

Next Steps

System Upgrades

- Increase operating distances
 - 275 meters on ground
- Night \rightarrow Daytime Operation:
 - SMF coupling
 - More spectral filtering
 - Pulsed beacons

NIR Beacon as seen by PAT Gimbal Camera (275-m Distance)

Entanglement Distribution

- Distribute EPR Pair between two mobile platforms
- Requires free-space quantum link

•

• Building block for distributed quantum sensors

Quantum Position Verification (QPV)

- Authenticate the position of a mobile platform using Quantum Resources
- Verifiers collaborate to accept or reject the proposed position of a prover (P)
- Modulated Entanglement state: $|\psi\rangle_{AB}$

[1] Ortiz, Kelsey. "SEAQUE (Satellite Entanglement and Annealing Quantum Experiment)." Bulletin of the American Physical Society (2023).

Research Team

Prof. Paul Kwiat

Prof. Daniel Gauthier

Samantha Isaac, Timur Javid, Roderick Cochran, Daniel Sanchez-Rosales, Andrew Conrad, Shuen Wu

SGCHE

office of Naval Research

The Grainger College of Engineering
Illinois Center for Transportation

Strategic Ohio Council for Higher Education

Questions?

aconrad5@Illinois.edu

Photo: Timur Javid

Quantum State Tomography

Quantum State Tomography Results $\rho_H = \begin{pmatrix} 0.9958 + 0.0000i \\ -0.0155 - 0.0625i 0.0042 - 0.0000i 0.0042 - 0.0000i 0.0042 - 0.0000i 0.5169 + 0.0000i 0.5169 + 0.0000i 0.5169 + 0.4845i 0.0958 - 0.4845i 0.5354 + 0.0000i 0.5354 + 0.0000i)$

State	Purity	Purity Uncertainty	Fidelity	Fidelity Uncertainty	RMS Error
H>	1	+/- 1.69e-07	0.99	+/- 6.00e-6	5.59e-4
R>	0.99	+/- 2.34e-04	0.99	+/- 1.19e-4	1.68e-06
L>	0.99	+/- 3.54e-05	0.98	+/- 1.35e-5	1.27e-08

QBER Estimate =
$$\frac{1}{2} \cdot (\text{trace}(\rho_L \cdot |\mathbf{R}\rangle\langle\mathbf{R}|) + \text{trace}(\rho_R \cdot |\mathbf{L}\rangle\langle\mathbf{L}|) = 1.2\%$$

Quantum Transmitter Bench

