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Introduction
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Although the standard BB84 protocol assumes the emission of single photons, ideal single-
photon sources remain difficult.

In practice: Phase-randomized attenuated laser pulses
Classical mixture of photon-number states

𝑝𝑛|𝜇 = 𝑒𝜇𝜇𝑛/𝑛! Poisson distributionPhase-randomized weak 
coherent pulse (PR-WCP)

Since 𝜇 < 0.5, most emissions have zero or one photons, but some have multiple.



PNS attack and decoy-state method
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Problem: Multiphoton emissions are insecure 
because of photon-number splitting attack[1].

Decoy-state method[2]

Emit pulses with different intensities

◉ Same key-rate scaling as with ideal single-photon source.
◉ Most QKD implementations and commercial systems use it.

Statistically characterize the effect of the 
quantum channel on single-photon states

[1] Brassard, G., Lütkenhaus, N., Mor, T. & Sanders, B. C. Phys. Rev. Lett. 85, 1330–1333 (2000).
[2] Lo, H.-K., Ma, X. & Chen, K. Phys. Rev. Lett. 94, 230504 (2005); Wang, X.-B. Phys. Rev. Lett. 94, 230503 (2005).

bound Eve’s information and distill a secret key



Imperfect phase randomization

Fundamental assumption
The phase of each pulse is independent and uniformly random

Two experimental approaches for phase randomization:
- Passive: Turn the laser on and off between pulses.
- Active: Modulate a random phase value into the pulse.

In practice, it may not be possible to satisfy this condition perfectly.

Existing proofs may not be able to guarantee the security of many QKD 
experiments and commercial systems.

We have developed two security analyses that address this problem
3



Passive phase randomization

The laser is turned on and off between pulses via gain switching, assuming that the phases will be
completely random.

However, experiments[1,2] have found correlations between the phases of consecutive pulses,
especially when the sources are run at high speeds.

We have developed a security proof that takes into account these correlations:

arXiv:2210.08183

4[1] T. Kobayashi, A.Tomita, A. Okamoto, Physical Review A 90, 032320 (2014);
[2] F. Grünenfelder, A. Boaron, D. Rusca, A. Martin, H. Zbinden, Applied Physics Letters 117, 144003 (2020).



Assumptions of our proof

Our proof does not require full characterization of the phase probability distribution.
Only needs the following knowledge:

Bound on maximum memory (i.e., correlation length)

Lower bound on conditional density function

for known 𝑙𝑐

for known 𝑞

Quantifies how close the conditional distribution is to
ideal case (uniform), given all possible side information
(previous and following phases).

. . .. . . 𝜙𝑖−2 𝜙𝑖−1 𝜙𝑖

E.g., if 𝒍𝒄 = 𝟏

5



We can finish the security proof using numerical methods based
on semidefinite programming.

Suppose that 𝝆𝐠𝐥𝐨𝐛𝐚𝐥 = 𝓔 𝝆𝐦𝐨𝐝𝐞𝐥
⊗𝑵 , 𝐰𝐡𝐞𝐫𝐞 𝝆𝐦𝐨𝐝𝐞𝐥 is known

We can assume that Alice generates 𝝆𝐦𝐨𝐝𝐞𝐥
⊗𝑵 and 𝓔 is part of the channel

Security proof (main idea)

KEY IDEA

Objective: Show that the actual protocol is equivalent to a scenario in which Alice’s source is
characterized and iid.

This idea and some proof steps come from:
Nahar, S. MSc Thesis. (University of Waterloo, 2022)

*
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Step 2. Due to Ass. 2,                                  , so:

Reduction to uncorrelated scenario (sketch for 𝑙𝑐 = 1)

Step 1. Divide rounds into even and odd. Prove security independently for each sub-protocol. When

proving security of e.g., even sub-protocol, assume that 𝜙odd = 𝜙1𝜙3… is fixed.

Due to 𝑙𝑐 = 1, conditioned on 𝜙odd, the state of the even rounds is                                   ,  where

where is a valid PDF
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Step 3. Define:

Then, 𝜌even
(𝑖)

= ℰ𝑖 𝜌model ➔ 𝝆𝐞𝐯𝐞𝐧 = 𝓔 𝝆𝐦𝐨𝐝𝐞𝐥
⊗𝑵/𝟐

.  

Reduction to uncorrelated scenario (𝑙𝑐 = 1)

ℰ𝑖: Shifts the 𝑖-th phase according to the noise PDF 𝑓′(𝜙𝑖|𝜙odd)

We can prove the security of the even sub-protocol assuming that Alice sends states like 𝜌model.
(Likewise for the odd sub-protocol)

The proof is generalizable to any correlation length 𝒍𝒄.

Conditioned on 𝜙odd, the state of the even rounds is                                   ,  where
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Results

We always prove security assuming that
Alice generates

Asymptotic key rate only depends on 𝒒
i.e., how uniform the conditional distribution of
each phase is given knowledge of all other phases.
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The value of 𝑞 can be characterized using experimental data under reasonable assumptions
(work is under way to develop more rigorous characterization tests – see poster by Alessandro Marcomini)
Using data from a recent 5 GHz experiment , we obtain 𝑞 = 0.992407.

[1] T. Kobayashi, A.Tomita, A. Okamoto, Physical Review A 90, 032320 (2014);
[2] F. Grünenfelder, A. Boaron, D. Rusca, A. Martin, H. Zbinden, Applied Physics Letters 117, 144003 (2020).

[1]

[2]

We can obtain good key rates even when
𝒒 is far from ideal!

Decoy-state QKD with passive phase randomization is robust against correlations!



Active phase randomization

In active phase randomization an external phase modulator driven by a quantum random number 
generator is used for phase randomization.

This approach is used in certain applications [1,2,3] like in chip-based QKD.

arXiv:2304.03562
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[2] P. Sibon et al., Nature Communications 8 13984 (2017).

[3] D. Bunandar et al., Physical Review X 8 021009 (2018).

A security proof to account for experimental imperfections in an active setup is needed.



Generated states in an active scheme
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Ideally: The phase of each round is independently and uniformly random.

In an ideal active scheme: The phase takes one of N possible values in 0, 2𝜋 .
The states are not perfect  PR-WCP.

Example for N=4.

The security of this scenario has been analyzed[4] .

[4] Z. Cao, Z. Zhang, H.-K. Lo, and X. Ma, New Journal of Physics 17, 053014 (2015).

However, that work assumes evenly distributed phases,
but inevitable imperfections of the phase modulator 
and electronic noise might invalidate this assumption.



Cases of interest
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Realistically: In an active phase randomization scheme, the phase distribution follows a certain PDF 
f 𝜽 . 

Where .

Noisy discrete-phase randomization

3𝜋/2

𝜋

𝜋/2

0

3𝜋/2

𝜋

𝜋/2

0

Partially known f 𝜽

Our results are applicable for any PDF f 𝜽 . For simplicity we consider two cases:



Key ideas of the security proof
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The previous security proof for passive randomization requires that 𝑓 𝜃 satisfies f 𝜽 ≥ 𝒒 > 𝟎 for 
all 𝜃, where 𝑞 is a known non-zero parameter.

In the case of active phase randomization, only a discrete number of phases is selected, and therefore 
there might be many values of the phase such that 𝒇 𝜽 = 𝟎.

Despite this, we can adapt the previous parameter estimation technique to the active scenario. 

By combining a parameter estimation technique based on SDP with basis mismatched events, 
we significantly improve the performance for the ideal discretization case.

We also employ certain inequalities based on the Bures distance to evaluate the key rate in the partially 
known 𝑓 𝜃 case. 



Results for ideal active phase randomization

14

For a standard channel model observed an 
enhancement of approximately 10 to 20 dB in 
performance when compared to previous works[4].

The use of basis mismatched events yields a 
more noticeable improvement when N is low.

Just with N=8 the performance is close to the 
ideal PR-WCP scenario. 



Results for realistic active phase randomization
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For the noisy scenario we assume that each pulse follows a 
Gaussian distribution around the selected discrete value.

The performance increases with the standard deviation.

Our analysis is applicable regardless of the exact PDF.

When the PDF is not fully characterized the 
performance drops significantly

Characterizing the PDF of an active configuration 
is a very relevant experimental task.



THANK YOU FOR YOUR ATTENTION!
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