Quantum advantage from one-way functions
 Tomoyuki Morimae (Kyoto University)
 Takashi Yamakawa (NTT and Kyoto University)

15 min
Qcrypt 2023 THEORETICAL PHYSICS

Quantum advantage

If [ASSUMPTION] is correct then there is a [PROBLEM] such that
(1) efficient quantum algorithm can solve it
(2) efficient classical algorithm cannot solve it

Two desirable properties:
(1) Assumption should be weaker and standard
(2) Efficiently verifiable

Previous approaches

	Assumption	Verifiability
Sampling	Ad hoc	NO
Search problems	Ad hoc	Inefficient
Proofs of quantumness	(noisy)2-1 TDCRHF (LWE) Full-domain TDP QHE (LWE) Random oracle	Efficient

Boson sampling, IQP, random circuit, DQC1...

XHOG, Fourier fishing...

Proofs of quantumness

Previous approaches

	Assumption	Verifiability
Sampling	Ad hoc	NO
Search problems	Ad hoc	Inefficient
Proofs of quantumness	(noisy)2-1 TDCRHF (LWE) Full-domain TDP QHE (LWE) Random oracle	Efficient

Open problem:
Efficiently verifiable quantum advantage with weaker and standard assumption?
\rightarrow Extremely challenging open problem
Inefficiently verifiable quantum advantage with weaker and standard assumption?
\rightarrow Still highly non-trivial

Our result

We show inefficiently-verifiable quantum advantage from weaker and standard assumption

We construct inefficiently-verifiable proofs of quantumness from OWFs Inefficiently-verifiable proofs of quantumness

Completeness:
There exists a QPT prover such that $\operatorname{Pr}\left[V_{2}\right.$ accepts $] \geq 2 / 3$
Soundness:
For any PPT prover, $\operatorname{Pr}\left[V_{2}\right.$ accepts $] \leq 1 / 3$

Strong, less standard

Newly introduced assumptions

NTCF
2-to-1TDCRHF
Full-domain TDP
QHE, Random oracle
Factoring,
PH will not collapse to $3^{\text {rd }}$ level

$$
P \neq N P
$$

Construction

PoQ by [KMCVY, Nat. Phys. 2022]

Classical commitments

Cannot find both x_{0} and x_{1}

Commitment: $t=\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots\right)$

Coherent execution of classical commitments

β_{1}

$$
\begin{gathered}
\sum_{b \in\{0,1\}} \sum_{x: f_{1}(b, x)=\alpha_{1}}|b\rangle|x\rangle\left|f_{2}\left(b, x, \alpha_{1}, \beta_{1}\right)\right\rangle \\
\sum_{b \in\{0,1\}} \sum_{x: f_{1}(b, x)=\alpha_{1}, f_{2}\left(b, x, \alpha_{1}, \beta_{1}\right)=\alpha_{2}}|b\rangle|x\rangle
\end{gathered}
$$

β_{2}

Coherent execution of classical commitments

$$
t=\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots,\right)
$$

$|0\rangle \sum_{x \in X_{0, t}}|x\rangle+|1\rangle \sum_{x \in X_{1, t}}|x\rangle$
If $\left|X_{0, t}\right|=\left|X_{1, t}\right|=1$, it is $|0\rangle\left|x_{0}\right\rangle+|1\rangle\left|x_{1}\right\rangle$

Then, we can run PoQ of [KMCVY22]

However, in general not...

Hashing technique

$$
r \leftarrow\{0,1\}^{l}
$$

$$
t=\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots,\right)
$$

With a non-negligible probability, $\left|X_{0, t} \cap h^{-1}(y)\right|=\left|X_{1, t} \cap h^{-1}(y)\right|=1$
Hence, we a non-negligible probability, the prover gets $|0\rangle\left|x_{0}\right\rangle+|1\rangle\left|x_{1}\right\rangle$

Conclusion

We show (inefficiently-verifiable) quantum advantage based on one-way functions!

	Assumption	Verifiability
Sampling	Ad hoc	NO
Search problems	Ad hoc	Inefficient
Proofs of quantumness	(noisy)2-1 TDCRHF (LWE) Full-domain TDP QHE (LWE) Random oracle Our result	Efficient

Other results: Constructing other variants of inefficiently-verifiable PoQ from worst-case assumptions such as CZK is not in BPP

Thank you!

[M and Yamakawa, arXiv:2302.04749]

Problems

$$
|0\rangle \sum_{x \in X_{0, t}}|x\rangle|h(x)\rangle+|1\rangle \sum_{x \in X_{1, t}}|x\rangle|h(x)\rangle \quad|0\rangle \sum_{x \in X_{0}, t \cap h^{-1}(y)}|x\rangle+|1\rangle \sum_{x \in X_{1, t} \cap h^{-1}(y)}|x\rangle
$$

With a non-negligible probability, $\left|X_{0, t} \cap h^{-1}(y)\right|=\left|X_{1, t} \cap h^{-1}(y)\right|=1$

To achieve this,
(1) $\left|X_{0, t}\right| \simeq\left|X_{1, t}\right|$ should be satisfied
\rightarrow Statistical hiding of the commitment!
(2) $\left|X_{0, t}\right|,\left|X_{1, t}\right|$ should be known in advance
\rightarrow Random guess works!

Summary

PPT verifier
Classical communication

$$
|0\rangle\left|x_{0}\right\rangle+|1\rangle\left|x_{1}\right\rangle
$$

Run [KMCVY22]!

Completeness is hence shown.
How about soundness?

Classical commitments

\therefore| | $b \in\{0,1\}$ |
| :--- | :--- |
| \div | $x \leftarrow\{0,1\}^{l}$ |

Cannot find $x_{0} \in X_{0, t}$ and $x_{1} \in X_{1, t}$

Commitment: $t=\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots\right)$

Backgrounds: proofs of quantumness

Bell's inequality

(1) If Bob and Charlie share entanglement, Alice accepts
(2) If they do not share entanglement, Alice rejects

Unconditional proof of quantumness! However, the no-communication has to be assumed

Classical Bob 2 cannot answer the correct measurement result because he does not know the state

This is Bad because now Alice is quantum

How can Alice remotely prepare BB84 states over only classical channel in such a way that Bob cannot learn the state?

We can use cryptography!

PoQ by [KMCVY, Nat. Phys. 2022]

$$
f_{0}, f_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

Claw-free:

Finding x_{0}, x_{1} s.t. $f_{0}\left(x_{0}\right)=f_{1}\left(x_{1}\right)$ is hard

Trapdoor:
With $t d$, it is easy to find, given y,

$$
x_{0}, x_{1} \text { s.t. } f_{0}\left(x_{0}\right)=f_{1}\left(x_{1}\right)=y
$$

y

$|0\rangle \sum_{x}|x\rangle\left|f_{0}(x)\right\rangle+|1\rangle \sum_{x}|x\rangle\left|f_{1}(x)\right\rangle$

$$
|0\rangle\left|x_{0}\right\rangle+|1\rangle\left|x_{1}\right\rangle
$$

$$
f_{0}\left(x_{0}\right)=f_{1}\left(x_{1}\right)=y
$$

r

$$
\left|r \cdot x_{0}\right\rangle\left|x_{0}\right\rangle+\left|r \cdot x_{1} \oplus 1\right\rangle\left|x_{1}\right\rangle
$$

$$
\left|r \cdot x_{0}\right\rangle+(-1)^{d \cdot\left(x_{0} \oplus x_{1}\right)}\left|r \cdot x_{1} \oplus 1\right\rangle
$$

$$
|0\rangle,|1\rangle,|+\rangle,|-\rangle
$$

Approach 1:Sampling

Not standard

If average-case \#P-hardness conjecture is true and PH does not collapse to the third level, there is no PPT algorithm that outputs z with probability q_{z} such that

$$
\sum_{z}\left|p_{z}-q_{z}\right| \leq \epsilon
$$

Advantage:
(1) simpler models are enough (boson sampling, IQP, random circuits, DQC1, etc.)

Disadvantage:
(1) ad hoc assumption is required
(2) Non-verifiable

Approach 2: Search problems

If [ASSUMPTION] is true then QPT algorithm can find z such that $R(z)=1$, but no PPT algorithm can

```
Ex: XHOG[Aaronson-Gunn]
Find }\mp@subsup{z}{1}{},\ldots,\mp@subsup{z}{k}{}\mathrm{ s.t. }\mp@subsup{E}{i}{}[|\langle\mp@subsup{z}{i}{}|C|\mp@subsup{0}{}{n}\rangle\mp@subsup{|}{}{2}]\geqb/\mp@subsup{2}{}{n
```

Advantage:
(1) simpler models are enough (random circuits)
(2) Inefficiently verifiable

Disadvantage:
(1) ad hoc assumption is required

XQUATH
There is no PPT algorithm that outputs p such that
$E\left[\left(p_{0}-p\right)^{2}\right]=E\left[\left(p_{0}-2^{n}\right)^{2}\right]-\Omega\left(2^{-3 n}\right)$

Approach 3: Proofs of quantumness (PoQ)

PPT

Efficiently verifiable!

Completeness:
There exists a QPT prover s.t. $\operatorname{Pr}[$ Verifier accepts] $\geq 2 / 3$
Soundness:
For any PPT prover, $\operatorname{Pr}[$ Verifier accepts $] \leq 1 / 3$

Assumptions:

NTCF [Brakerski, Christiano, Mahadev, Vazirani, Vidick, FOCS 2018]
2-to-1 TDCRHF [Kahanamoku-Meyer, Choi, Vazirani, Yao, Nat. Phys. 2022]
Full-domain TDP [Morimae, Yamakawa, ITCS 2023]
QHE [Kalai, Lombardi, Vaikuntanathan, Yang, STOC 2023]
Random Oracle [Yamakawa, Zhandry, FOCS 2022]

Previous approaches

	Assumption	Verifiability
Sampling	Ad hoc	NO
Search problems	Ad hoc	Inefficient
Proofs of quantumness	(noisy)2-1 TDCRHF (LWE) Full-domain TDP QHE (LWE) Random oracle	Efficient

Open problem:
Quantum advantage with weaker and standard assumption + efficient verifiability?
\rightarrow We do not know how to solve it \cdots
Open problem:
Quantum advantage with weaker and standard assumption + inefficient verifiability?
\rightarrow Even this one is highly non-trivial!

OWF is the most fundamental in cryptography

[Russell Impagliazzo and Michael Luby, 1989, One-way functions are essential for complexity based cryptography]

Our result

We show (inefficiently-verifiable) quantum advantage based on one-way functions!

	Assumption	Verifiability
Sampling	Ad hoc	NO
Search problems	Ad hoc	Inefficient
Proofs of quantumness	$\begin{aligned} & \text { (noisy)2-1 TDCRHF (LWE) } \\ & \text { Full-domain TDP } \\ & \text { QHE (LWE) } \\ & \text { Random oracle } \end{aligned}$	Efficient
Our result	(Classically-secure)One-way functions	Inefficient ($B P P^{N P}$)

Proof Idea

Inefficiently-verifiable proofs of quantumness

Completeness:
There exists a QPT prover such that $\operatorname{Pr}\left[V_{2}\right.$ accepts $] \geq 2 / 3$
Soundness:
For any PPT prover, $\operatorname{Pr}\left[V_{2}\right.$ accepts $] \leq 1 / 3$

