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Quantum Supremacy (Test of Quantumness)

* Perform computations that outperforms classical
computers.

* A need for efficiently-verifiable quantum
advantage.
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Simple Example of Proof of Quantumness [Shor’94]

Prover G
Verifier

Primes p and g

Generates
factor N

primes p, q

{FactorN =p- q?

Problem: hard to implement on NISQ
(Noisy Intermediate-Scale Quantum)
Computers.
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Previous Works

« BCMVV’18! — Proof of Quantumness based on LWE with
adaptive-hardcore bit.

* Requires an aggressive setting of parameters for LWE which hampers
practical implementation.

e YZ'22? — Proofs of Quantumness in the random oracle model.

* Recently, two proposals of protocols in the standard model with
less computational assumptions KCVY’213 and KLVY’22%.

A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device, Z. Brakerski, P. Christiano,
U. Mahadev, U. Vazirani, T. Vidick, 2018

Verifiable Quantum Advantage without Structure, T. Yamakawa, M. Zhandry, 2022

Classically-Verifiable Quantum Advantage from a Computational Bell Test, G. Kahanamoku-Meyer, S. Choi, U. Vazirani, N. Yao.
Quantum Advantage from Any Non-Local Game, Y. Tauman Kalai, A. Lombardi, V. Vaikuntanathan, L. Yang



Beyond Quantum Supremacy

* Suppose we have a NISQ computer which achieves Quantum
Supremacy

* Could we delegate computation to the Quantum computer?
* Could we make it generate certifiable randomness?

* Qubit Certification - a useful building block for quantum
verification protocols.






Qubit Certification

 Operational view of Qubits’: the prover has a triplet (|), X, Z)
where X and Z are binary operators which “approximately anti-
commute” on |).

* Could we use existing proofs of Quantumness as tests for
qubits?

* Yes!

* Course FSMP, Fall’20: Interactions with Quantum
Devices, Thomas Vidick, 2022



Our Results

* For a specific class of protocols, we show:

* A quantum soundness barrier against quantum cheating provers
(vs classical soundness).

 Provers that approach the quantum soundness barrier must perform anti-
commuting measurements (a qubit test).

* NZ’'23 show related results for the KLVY’22 protocol. Prove how it
can be used to get a protocol for delegation of quantum computation.



Our Protocol Template

Prover

‘ i PHASE 1

flag € {acc, rej, cont}
.

quantum state

Verifier

A

A 4

A

if flag = cont: =
trans transcript of the protocol
m € {0,1} challenge

PHASE 2 b
b € {0,1} response

B
»

verifier accepts if (—1)? = ¢,,(rand, trans)



Soundness for classical provers — Sketch

* Prove that it is hard (classical) to compute the parity of both
challenges: ¢, - ¢; with some noticeable advantage

« Show that a classical adversary that achleves + & success
probability can employ a rewinding startegy to compute the

parity.



Computing Parity in the Quantum World

* Problem: Quantum computers cannot perform rewinding...

* Could they somehow compute the parity with some noticeable
advantage?



Modeling Quantum Provers

* For each m € {0,1} (challenge bit) the prover performs a set
projective measurement on its state [¥«ra.-)

{ H m } Challenge bit

Response bit







Soundness for quantum provers - sketch

* Prove that it is hard (quantum) to compute the parity of both
challenges: ¢, - ¢4
* Quantum Analogue: Show that a quantum adversary that

achieves cos* (E) + & success probability, using the parity
. 8 . °
algorithm can compute parities



Parity Hardness - Quantum Soundness

No classical
(quantum) polynomial time Then no classical (quantum) polynomial-time
algorithm guesses € - ¢4 % prover §ucceeds in the protocol template with
with non-negligible probability larger than 75% (resp. cos*(1/8) =~
advantage 85%) by more than a negligible amount




Qubit Test

* The quantum soundness result gives us a qubit test

» If a prover approaches the soundness barrier, then the
measurements Q, = 1'[20 and Qq = Hél must be close to anti-
commuting









Trapdoor claw-free functions — cntd.

» Efficiently generate superposition
1

mzxnfk(x»
k1l x

- Efficiently distinguish between the preimages x, and x4




KCVY Protocol - Simplitied e

k,t, for a
TCF

Honest Prover PHASE 1

@, Verifier
1. Generates

SR Sl felo)y Lk-Keyfor % @
@ 2. Measures Y register TCE
@ (Uxodx + [x1) ) 1Y)y

3. Sends y to the
verifier.




KCVY Protocol - Simplified

Generates

k,t, for a

Honest Prover PHASE 1 TCF

@,
D). Computes ancilla bit -
|0} x0)x + [D)x1)x k - Key for
. Using ancilla } TCF

Verifier

[0)xodxlro - Xodo + | Dx1) x|y - X1)x
3. Uncomputes ancilla

|%0) |70 * X0) + |xX1) x|y - X%1)

To, 71 < g {0,1}"

\-




KCVY Protocol - Simplified

Generates

k,t, for a

Honest Prover PHASE 1 TCF

Verifier

. Measures X register

|d)x ((—1)d'x°|7”0 - x) + (=D xy)x |1y 'x1)) 0,11 < g {0,1}"

\-

@,
<> Computes Hadamard on X register =
dx 45 k = Key for
@ Zld)x (C D% 29 £ € DP el 1) TCF
% .
4

5. Sends d to the verifier



Generates

KCVY Protocol - Simplified

k,t, for a

Honest Prover PHASE 2 TCF

@, Verifier

\-

3 m € {0,1}

< > olds the state ~
) = |rp - %) + (DT XD | )y |ry - xp) k = Key for
TCF
=0 m=1 >
i 31 -
@ ; 8 o, 71 <R {0,1}nj>
T
8

Sends b the outcome of the measurement.



KCVY Protocol - Simplitied

Generates
k,t, for a
Honest Prover PHASE 1 TCF
®. Verifier
N
-
y €Y, ;eer;;ritee claw and k = Key for
y ) TCF
Y\ Multiply by rp, 1y >
d € {0,1}" & Perform Hadamard
)  measurement 10,71 <r {0,1}"
PHASE 2 L
-
b € {0,1} Challenge-Response
) m € {0,1}




KCVY Protocol - Simplified

Verifier o - -
Accept if b is the “expected” measurement outcome

Using trapdoor t; can find xy and x4

Computes ¢, (xg, X1, 79,71, d)

Accepts if (—1)? = ¢,



Post-Quantum TCF - Hardness of parity

e Easy to see that ¢, - ¢; = (—1)0¥®"1 %1 = (—1)"&oll*1) where
r =n1lln

Quantum Goldreich-
Levin’

Post-Quantum
Trapdoor claw-
free functions

Hardness of
Computing Parity

A 4

* A quantum Goldreich-Levin theorem with cryptographic applications, Mark Adcock, Richard Cleve, 2002



Open Questions

* Could we generalize our approach to the tests
of quantumness in BCMVV’18 and the ones that

operate in the random oracle model?

Proofs of
* A hierarchy of “capabilities” Quantumess
. . : .. based on non-
* What is the minimal basis for achieving rewinding
these capabilities? ‘

Qubit

certification

Certifiable
Randomness
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