Simple Tests of Quantumness Also Certify Qubits

Zvika Brakerski (Weizmann Institute of Science) Alexandru Gherghiu (Chalmers University of Technology) Gregory D Kahanamoku-Meyer (University Of California, Berkeley) <u>Eitan Porat (Weizmann Institute of Science)</u> Thomas Vidick (Weizmann Institute of Science)

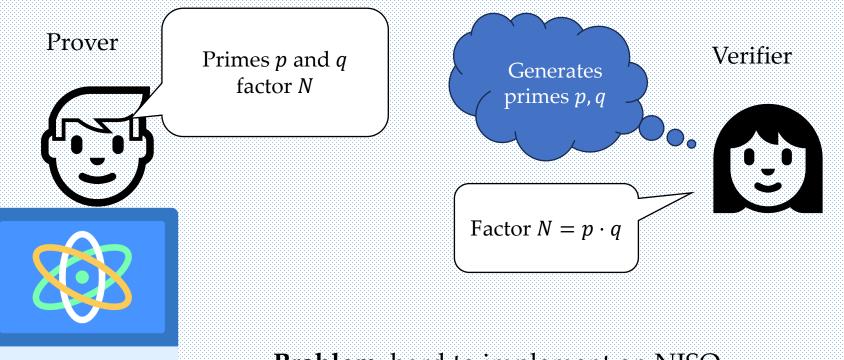
מכוז ויצמז למדע WEIZMANN INSTITUTE OF SCIENCE

Quantum Supremacy (Test of Quantumness)

- Perform computations that outperforms classical computers.
- A need for efficiently-verifiable quantum advantage.

Google Sycamore Image Rights: Forest Stearns, Google AI Quantum Artist in Residence

Simple Example of Proof of Quantumness [Shor'94]



Problem: hard to implement on NISQ (Noisy Intermediate-Scale Quantum) Computers.

Previous Works

- BCMVV'18¹ Proof of Quantumness based on LWE with adaptive-hardcore bit.
 - Requires an aggressive setting of parameters for LWE which hampers practical implementation.
- YZ'22² Proofs of Quantumness in the **random oracle model**.
- Recently, two proposals of protocols in the standard model with less computational assumptions KCVY'21³ and KLVY'22⁴.

- 1. A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device, Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, T. Vidick, 2018
- 2. Verifiable Quantum Advantage without Structure, T. Yamakawa, M. Zhandry, 2022
- 3. Classically-Verifiable Quantum Advantage from a Computational Bell Test, G. Kahanamoku-Meyer, S. Choi, U. Vazirani, N. Yao.
- 4. Quantum Advantage from Any Non-Local Game, Y. Tauman Kalai, A. Lombardi, V. Vaikuntanathan, L. Yang

Beyond Quantum Supremacy

- Suppose we have a NISQ computer which achieves Quantum Supremacy
- Could we delegate computation to the Quantum computer?
- Could we make it generate certifiable randomness?
- Qubit Certification a useful building block for quantum verification protocols.

Qubit Certification

- Could we verify that the quantum computer has a qubit?
- What does it mean to "have" a qubit?

Qubit Certification

- **Operational view of Qubits**^{*}: the prover has a triplet $(|\psi\rangle, X, Z)$ where X and Z are binary operators which "approximately anti-commute" on $|\psi\rangle$.
- Could we use existing proofs of Quantumness as tests for qubits?
- Yes!

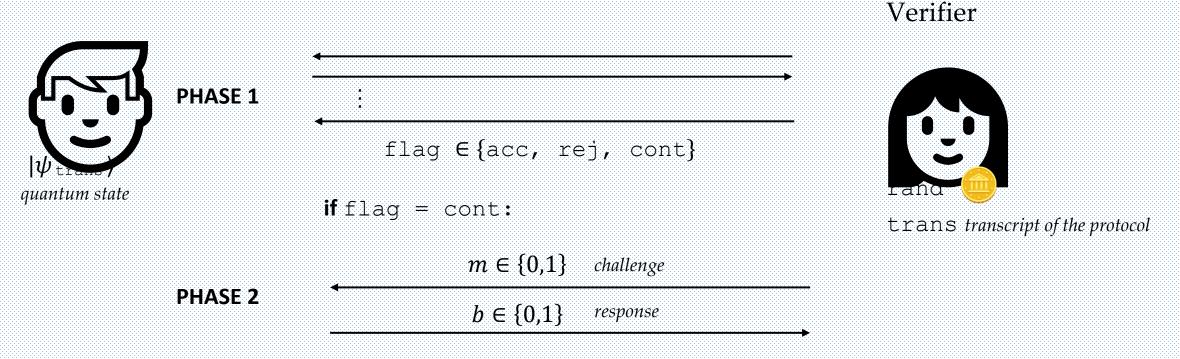
* Course FSMP, Fall'20: Interactions with Quantum Devices, Thomas Vidick, 2022

Our Results

- For a specific class of protocols, we show:
 - A quantum soundness barrier against quantum cheating provers (vs classical soundness).
 - Provers that approach the quantum soundness barrier *must perform anti- commuting measurements* (a qubit test).
- NZ'23 show related results for the KLVY'22 protocol. Prove how it can be used to get a protocol *for delegation of quantum computation*.

Our Protocol Template

Prover



verifier accepts if $(-1)^b = \hat{c}_m(\text{rand, trans})$

Soundness for classical provers – Sketch

- Prove that it is hard (**classical**) to compute the parity of both challenges: $\hat{c}_0 \cdot \hat{c}_1$ with some noticeable advantage
- Show that a classical adversary that achieves $\frac{3}{4} + \varepsilon$ success probability can employ a rewinding startegy to compute the parity.

Computing Parity in the Quantum World

- Problem: Quantum computers cannot perform rewinding...
- Could they somehow compute the parity with some noticeable advantage?

Modeling Quantum Provers

 For each *m* ∈ {0,1} (challenge bit) the prover performs a set projective measurement on its state |ψ_{trans}⟩

$$\{\Pi_b^m\}$$
 Challenge bit Response bit

Parity Algorithm

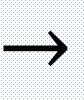
- (Algorithm \mathcal{A}_1)
- Execute Phase 1 of the protocol template to obtain (trans, $|\psi_{trans}\rangle$) and a flag.
- (Algorithm \mathcal{A}_2)
- b_0 = measurement of \mathcal{H}_P using { Π_0^0, Π_1^0 }.
- b_1 = measurement of \mathcal{H}_P using { Π_0^1, Π_1^1 }.
- Return $b_0 \oplus b_1$.

Soundness for quantum provers - sketch

- Prove that it is hard (**quantum**) to compute the parity of both challenges: $\hat{c}_0 \cdot \hat{c}_1$
- Quantum Analogue: Show that a quantum adversary that achieves $\cos^2\left(\frac{\pi}{8}\right) + \varepsilon$ success probability, using the parity algorithm can compute parities

Parity Hardness → Quantum Soundness

No classical (quantum) polynomial time algorithm guesses $\hat{c}_0 \cdot \hat{c}_1$ with non-negligible advantage



Then no classical (quantum) polynomial-time prover succeeds in the protocol template with probability larger than 75% (resp. $\cos^2(\pi/8) \approx 85\%$) by more than a negligible amount

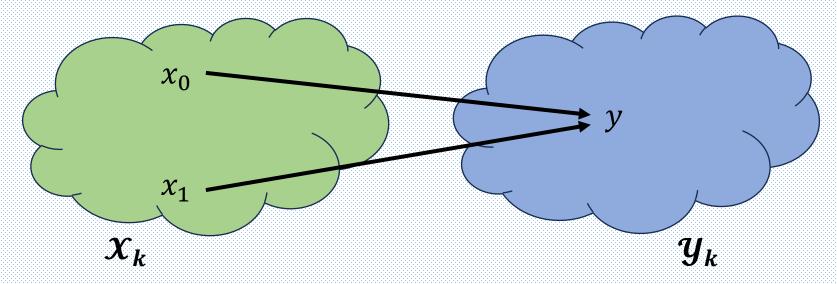
Qubit Test

- The quantum soundness result gives us a qubit test
- If a prover approaches the soundness barrier, then the measurements $Q_0 = \prod_{\hat{c}_0}^0$ and $Q_1 = \prod_{\hat{c}_1}^1$ must be close to anticommuting

Example: KCVY Protocol

Trapdoor claw-free functions

• Keyed functions $f_k: \mathcal{X}_k \to \mathcal{Y}_k$ with trapdoor t_k



- Hard (quantum) to find a claw (x_0, x_1) such that $f_k(x_0) = f_k(x_1)$
- Given trapdoor t_k , for each y easy to find $f_k(x_0) = f_k(x_1) = y$

Trapdoor claw-free functions – cntd.

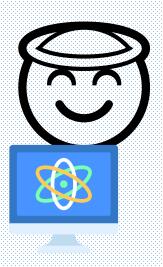
• Efficiently generate superposition

$$\frac{1}{\sqrt{|\mathcal{X}_k|}} \sum_{x} |x\rangle |f_k(x)\rangle$$

• Efficiently distinguish between the preimages x_0 and x_1

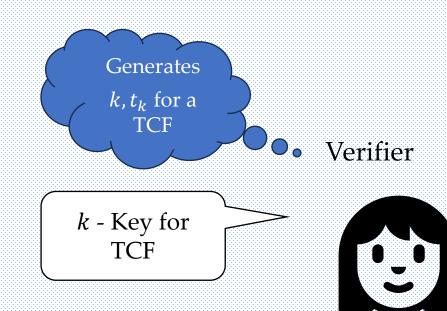
Honest Prover

PHASE 1



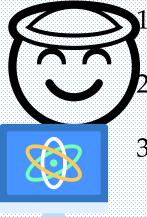
 Generates
 ∑_x|x⟩_X|f_k(x)⟩_y
 2. Measures *Y* register
 (|x₀⟩_X + |x₁⟩_X)|y⟩_y

3. Sends *y* to the verifier.

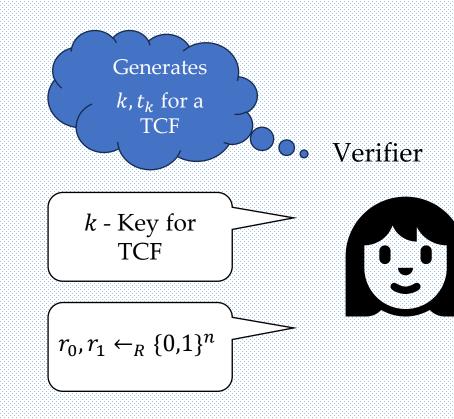


Honest Prover

PHASE 1

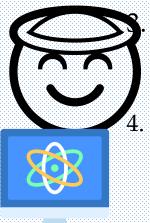


 Computes ancilla bit |0⟩|x₀⟩_X + |1⟩|x₁⟩_X
 Using ancilla |0⟩|x₀⟩_X|r₀ ⋅ x₀⟩_X + |1⟩|x₁⟩_X|r₁ ⋅ x₁⟩_X
 Uncomputes ancilla |x₀⟩_X|r₀ ⋅ x₀⟩ + |x₁⟩_X|r₁ ⋅ x₁⟩



Honest Prover

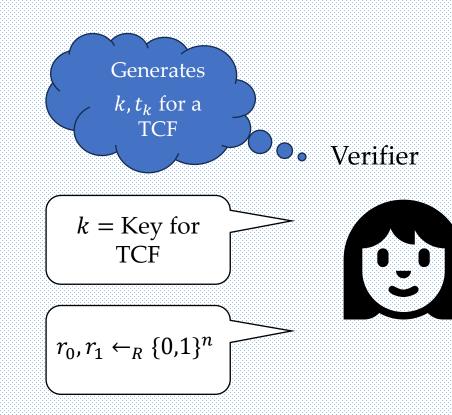
PHASE 1



Computes Hadamard on \mathcal{X} register $\sum_{d} |d\rangle_{\mathcal{X}} \left((-1)^{d \cdot x_0} |r_0 \cdot x_0\rangle + (-1)^{d \cdot x_1} |x_1\rangle_{\mathcal{X}} |r_1 \cdot x_1\rangle \right)$ Measures \mathcal{X} register

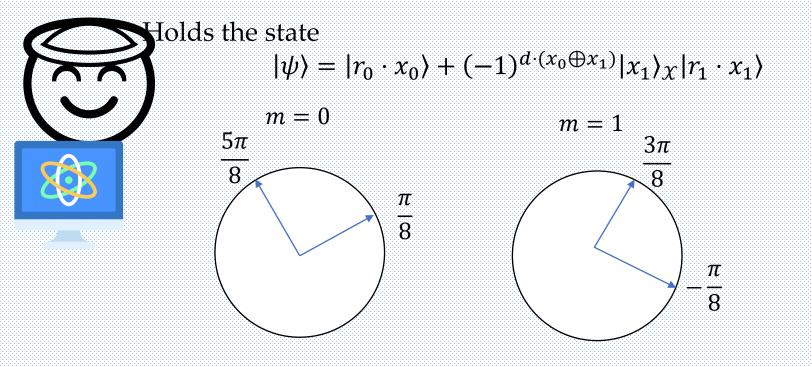
$$|d\rangle_{\mathcal{X}}\left((-1)^{d\cdot x_{0}}|r_{0}\cdot x_{0}\rangle+(-1)^{d\cdot x_{1}}|x_{1}\rangle_{\mathcal{X}}|r_{1}\cdot x_{1}\rangle\right)$$

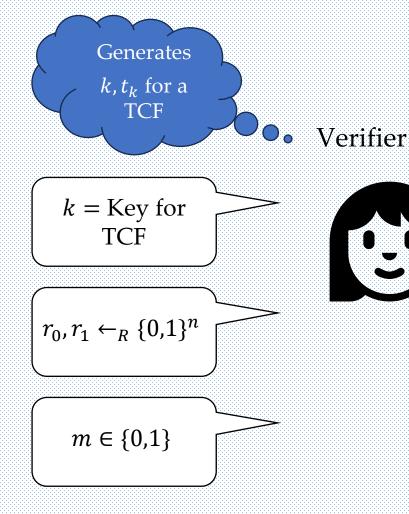
5. Sends *d* to the verifier



Honest Prover

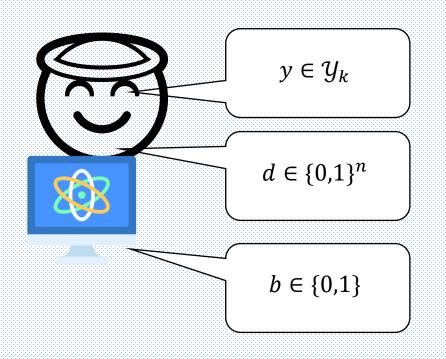
PHASE 2





Sends *b* the outcome of the measurement.

Honest Prover



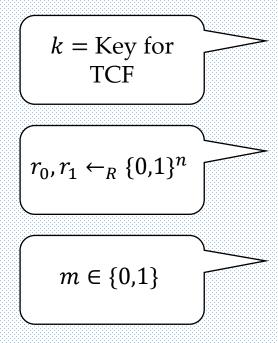
PHASE 1

Generate claw and measure *y*

Multiply by r_0, r_1 & Perform Hadamard measurement PHASE 2

L 11 D

Challenge-Response



Verifier

Accept if *b* is the "expected" measurement outcome

Using trapdoor t_k can find x_0 and x_1

Computes $\hat{c}_m(x_0, x_1, r_0, r_1, d)$

Accepts if $(-1)^b = \hat{c}_m$

Post-Quantum TCF \rightarrow Hardness of parity

• Easy to see that $\hat{c}_0 \cdot \hat{c}_1 = (-1)^{r_0 \cdot x_0 \bigoplus r_1 \cdot x_1} = (-1)^{r \cdot (x_0 ||x_1)}$ where $r = r_0 ||r_1$

Post-Quantum	
Trapdoor claw-	
free functions	

Quar	ıtum	Goldreich-	
Levin	1*		

Hardness of
Computing Parity
Computing Parity

* A quantum Goldreich-Levin theorem with cryptographic applications, Mark Adcock, Richard Cleve, 2002

Open Questions

- Could we generalize our approach to the tests of quantumness in BCMVV'18 and the ones that operate in the random oracle model?
- A hierarchy of "capabilities"
 - What is the minimal basis for achieving these capabilities?

