

The Application of Hybrid Photonic Integration to Quantum Key Distribution

Joseph A. Dolphin, Taofiq K. Paraiso, Han Du, Robert I. Woodward, Davide G. Marangon and Andrew J. Shields

Toshiba Europe Limited Cambridge Research Laboratory 2023.08.15

Quantum Key Distribution (QKD) and Integrated Photonics

Hybrid Integration Technologies

Our solution: A Hybrid InP/SiN QKD Transceiver PIC

InP – 2 x Electro-optic phase modulators

- High bandwidth
- Low V_{π}
- Constant loss

SiN – 2 x Asymmetric
 Mach Zehnder
 Interferometers
 Ultra-low propagation

loss (0.1 dB/cm)

- Precise manufacturing
- Integrated thermo-optic

phase shifters

Operates as both quantum encoder and decoder at 1 GHz

Our solution: A Hybrid InP/SiN QKD Transceiver PIC

Experimental setup

Control schematic:

- SNSPD photon detection (~85 % SPDE)
- 10'000 ns pseudo-random pattern
- Secure key rates estimated in postprocessing

QKD Performance

> 0.66 % min. quantum bit error rate
7dB channel → 1.57 Mbps secure key rate

QKD Performance

▶ 0.66 % min. quantum bit error rate

 7dB channel \rightarrow 1.57 Mbps secure key rate

Long-Distance Unidirectional Operation

- > 250 km (44 dB loss) real fibre range
 - 186 bps (asymptotic^[2])
 - 67 bps (finite key^[3])

[2] Ma, X., Qi, B., Zhao, Y. & Lo, H.-K. Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)
 [3] Lucamarini, M. et al. Efficient decoy-state quantum key distribution with quantified security. Opt. Express 21, 24550–24565 (2013)

Stability

System stability over 50 hours
 runtime (10 dB attenuation)

Stable through power

cycling

Conclusions

- > We have developed an edge-coupled hybrid InP/SiN QKD transceiver PIC
 - > Bidirectional QKD operation with an actively modulated receiver
 - > Exhibiting competitive secure key rates, stability, reproducibility,

low operating voltages and state-of-the-art fibre distances.

Thank You

A Hybrid Integrated Quantum Key Distribution Transceiver Chip Joseph A. Dolphin, Taofiq K. Paraiso, Han Du, Robert I. Woodward, Davide G. Marangon, Andrew J. Shields arXiv:2308.02238, to appear in NPJ Quantum Information

Additional Slides

Appendix Slide 1: Optical Loss

- Reduction of optical loss is critical to any quantum receiver circuit
- We characterise eight identical hybrid circuits to investigate the achievable loss
- Redundant waveguide structures in the chip allow us isolate the different sources of loss.

• We measure six out of eight circuits to have optical loss <8 dB, with four best performers at ~ 7.5 B

Appendix Slide 2: Material Platforms

Example QKD System (Time-bin Encoding, Discrete Variable)

Appendix Slide 3: Existing On-Chip QKD Demonstrations

-	QTx/ QRx On-chip	QTx Platform	Protocol	Encoding	Laser source	QTx State Modulation	QRx Platform	QRx Basis Modulation	Receiver Loss	Clock rate
Honjo et al. Optics Letters 29, 23 (2004)	QRx only	Fibre	DPS	Phase	-	-	Silica	Passive	2.6 dB	1 GHz
Ta na ka et al. IEEE J. Quantum Electron. 48 , 4 (2012)	QRx only	Fibre	BB84	Time-bin	-	-	Silica	Passive	4 dB	1.25 GHz
Ma et al. <i>Optica</i> 3 , 11 (2016)	QTx only	Si	BB84	Polarisation	External	Carrier depletion (CDM)	Fibre	-	-	10 MHz
Sibson et al. <i>Nat Commun</i> 8 , 13984 (2017)	QTx + QR	InP	BB84, DPS, COW	Time-bin, Phase	On-chip	Travelling wave EOPM	SiOxNy	Passive	9 dB	560 MHz [BB84] 1.76 GHz [DPS]
Sibson et al. <i>Optica</i> 4 , 2 (2017) (b)	QTx + QR	Si	BB84, COW	Time-bin Polarisation	External	CDM	Si	Passive	Not stated	1 GHz 0.86 GHz
Ding et al. <i>npj Quantum Inf</i> 3 , 25 (2017)	QTx + QR	Si	High-Dim. QKD	Path entanglement	External	TOPM	Si	ТОРМ	8 dB	5 kHz/10 kHz
Bunandar et al. <i>Phys Rev X</i> 8 , 021009 (2018)	QTx only	Si	3-state BB84	Polarisation	External	CDM	Fibre	-	-	625 MHz
Paraiso et al. npj Quantum Inf 5 , 42 (2019)	QTx + QR	InP	BB84, DPS	Time-bin, Phase	On-chip	Phase-seeding	SiN	Passive	Not stated	1 GHz
Zhang et al. Nat. Photonics 13 , 839 (2019)	QTx + QRx	Si	CV-QKD	Gaussian-modulated	External	CDM	Si	CDM	5 dB	1-10 MHz
Geng et al. Opt Express 27, 29045 (2019)	QTx + QR	Si	BB84	Time-bin	External	CDM	Si	Passive	15 dB	100 MHz
Cao et al. <i>Phys Rev Applied</i> 14 , 011001 (2020)	QTx + QR	Si	MDI-QKD	Polarisation	External	CDM	Si	Passive	Not stated	0.5 MHz
Semenenko et al. <i>Optica</i> 7 , No. 3 (2020)	QTx only	InP	MDI-QKD	Time-bin	On-chip	Travelling wave EOPM	Fibre	-	-	250 MHz
Wei et al. Phys Rev X 10, 031030 (2020)	QTx only	Si	MDI-QKD	Polarisation	External	CDM	Fibre	-	-	1.25 GHz
Avesani et al. <i>npj Quantum Inf</i> 7 , 93 (2021)	QTx only	Si	3-state BB84, free space	Polarisation	External	CDM	Fibre	-	-	50 MHz
Paraiso et al. Nat. Photonics 15, 11 (2021)	QTx + QR	InP	BB84	Time-bin	On-chip	Phase-seeding	SiN	External Phase Modulator	Not stated	1 GHz
Beutel et al. <i>npj Quantum Inf</i> 7 , 1 (2021)	QRx only	Fibre	3-state BB84	Time-bin	-	-	SiN	Passive	Not stated	2.6 GHz
Zhu et al. Phys Rev Applied 17 , 6 (2022)	QTx only	Si	BB84	Polarisation	External	CDM	Fibre	-	-	1 GHz
Beutel et .al <i>Optica</i> 9 , 10 (2022)	QRx only	Fibre	3-state BB84, 4 WDM channels	Time-bin	-	-	SiN	Passive	< 8 dB (deduced)	3.35 GHz
Sax et al. arXiv preprint (2022)	QTx + QR	Si	3-state BB84	Time-bin	External	Carrier Insertion (CIM)	Silica	Passive	3 dB	2.5 GHz
Li et al. Nat. Photonics (2023)	QTx only	Si	BB84	Polarisation	External	Carrier depletion (CDM)	Fibre	-	-	2.5 GHz
This work (2023)	QTx + QRx	SiN / InP Hybrid	BB84	Time-bin	External	EOPM	SiN / InP Hybrid	EOPM	7.5 dB	1 GHz

Appendix Slide 4: Extended Stability Data

