QGRYPT 2 23

Single-qubit loss-tolerant quantum position verification protocol secure against entangled attackers

Llorenç Escolà Farràs, and Florian Speelman
l.escolafarras@uva.nl

Universiteit van Amsterdam

What is Position Verification?

Classical Position Verification

Classical Position Verification

Classical Position Verification
position

Classical Position Verification

Classical Position Verification

Classical Position Verification
position
(2)

Classical Position Verification

Classical Position Verification

Classical Position Verification

Classical Position Verification

Classical Position Verification

But...

Universal attack

Classical universal attack
position
Q
3
time

Classical universal attack

time

Classical universal attack

position

Classical universal attack
position
Cor
time

Classical universal attack
position

time

Classical universal attack

Classical universal attack

Classical universal attack
time

Classical universal attack
time

Classical universal attack

Classical universal attack

Classical universal attack

Classical universal attack

Classical universal attack

Classical universal attack

No-cloning theorem
4

No-cloning theorem

No-cloning theorem

No-cloning theorem

No-cloning theorem

No-cloning theorem

No-cloning theorem

Unknown quantum states cannot be copied

No-cloning theorem

Unknown quantum states cannot be copied

Position Verification (PV)

position

Quantum Position Verification (QPV)

position

This prevents copying attacks

Quantum Position Verification (QPV)

position

This prevents copying attacks

Quantum Position Verification (QPV)

position

Quantum Position Verification (QPV)

position

This prevents copying attacks

A concrete QPV protocol

$\mathrm{QPV}_{\mathrm{BB} 84}$

$$
|\phi\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}
$$

V_{0}
V_{1}

time

$\mathrm{QPV}_{\mathrm{BB} 84}$

$|\phi\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}$

$\mathrm{QPV}_{\text {BB84 }}$

$$
|\phi\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}
$$

$\mathrm{QPV}_{\mathrm{BB} 84}$

$|\phi\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}$

$\mathrm{QPV}_{\mathrm{BB} 84}$

$$
|\phi\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}
$$

$\mathrm{QPV}_{\mathrm{BB} 84}$

$$
|\phi\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}
$$

Attacks

Attack pre-sharing entanglement [KMS11]

If no pre-shared entanglement [TFKW13]:

Attack pre-sharing entanglement [KMS11]

Attack pre-sharing entanglement [KMS11]

All quantum position verification protocols can be attacked... [BCFGGOS11]

All quantum position verification protocols can be attacked... [BCFGGOS11]
...the best know general attack requires exponential amount of pre-shared entanglement.

All quantum position verification protocols can be attacked... [BCFGGOS11]
...the best know general attack requires exponential amount of pre-shared entanglement.

Goal: easy protocol which is very difficult to attack.

Experimental implementation encounters problems

Experimental implementation encounters problems

Experimental implementation encounters problems

Photon loss

Experimental implementation encounters problems

Photon loss

Slow quantum info: $\sim 2 / 3 \mathrm{c}$

Experimental implementation encounters problems

Photon loss

Slow quantum info: $\sim 2 / 3 \mathrm{c}$

Taking advantage of photon loss

Taking advantage of slow quantum information

Step 1. Let's analyze the loss
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

QPV $V_{B B 44}^{\mid}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

Given an error $p_{\text {err }}$,
the prover is going to be correct w.p.
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

Given an error $p_{\text {err }}$,
the prover is going to be correct w.p.

$$
p_{\mathrm{C}}=\eta\left(1-p_{e r r}\right)
$$

Security:

unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$

Security:
unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

Security:
unentangled attackers

Goal: to upper bound attackers' prob of answering correctly $q_{\text {C }}$

Security:
unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

Security:
unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

Security:
unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

Security:
unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

Security:
unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

$a \in\{0,1, \perp\}$

Security: unentangled attackers
$\mathrm{QPV}_{\mathrm{BB} 84}^{\eta}$
Goal: to upper bound attackers' prob of answering correctly q_{C}

$$
\text { Result } \quad q_{\mathrm{C}}^{*}=\cos ^{2}\left(\frac{\pi}{8}\right) \eta+\sin ^{2}\left(\frac{\pi}{8}\right)(1-\eta) \quad \forall \eta \in\left[\frac{1}{2}, 1\right]
$$

In experimental parameters, the result translates to

But still insecure if the attackers pre-share one EPR pair

But still insecure if the attackers pre-share one EPR pair

Step 2. Using Step 1 to fix it

$\mathrm{QPV}_{\mathrm{BB}}{ }^{f f}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{, f}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{, f}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{, f}$

$\mathrm{QPV}_{\mathrm{BB} 84}^{, f}$

Extension proven secure [BCS22]

$\mathrm{QPV}_{\mathrm{BB} 84}^{, f}$

Extension proven secure [BCS22]

1. by attackers that pre-share entanglement, and

$\mathrm{QPV}_{\mathrm{BB} 84}^{, f}$

Extension proven secure [BCS22]

1. by attackers that pre-share entanglement, and
2. arbitrary slow quantum information

$\mathrm{QPV}_{\mathrm{BB} 84}^{0 f}$

QPV 0 BB84

$\mathrm{QPV}^{\text {ans }}$
 BB84

Previous result with loss

$\mathrm{QPV}^{0 f}{ }^{0 f}$
 BB84

Previous result with loss

Technical lemma

$\mathrm{QPV}^{0 f}{ }^{0 f}$
 BB84

Previous result with loss

QPV 0
 BB84

Previous result with loss

QPV $0 f$
 BB84

Previous result with loss

QPV用f
 BB84

Previous result with loss

Main result

Main result
If

Main result
If

- number of pre-shared qubits $\leq n / 2-5$ (ENTANGLED attackers),

Main result

If

- number of pre-shared qubits $\leq n / 2-5$ (ENTANGLED attackers),
- quantum info arbitrarily slow,

Main result

If

- number of pre-shared qubits $\leq n / 2-5$ (ENTANGLED attackers),
- quantum info arbitrarily slow,
- photon loss

Main result
If

- number of pre-shared qubits $\leq n / 2-5$ (ENTANGLED attackers),
- quantum info arbitrarily slow,
- photon loss

Main result

If

- number of pre-shared quits $\leq n / 2-5$ (ENTANGLED attackers),
- quantum info arbitrarily slow,
- photon loss
the protocol is still SECURE

Main result

If

- number of pre-shared qubits $\leq n / 2-5$ (ENTANGLED attackers),
- quantum info arbitrarily slow,
- photon loss
the protocol is still SECURE

This means

This means

Protocol

This means

This means

This means

Protocol
Attack (With loss)

Classical info

This means

Attack

Classical info $2 n$
$2 n$

This means

Attack

Classical info $2 n$
$2 n$

Qubits

This means

Classical info	$2 n$	$2 n$
Qubits	1 qubit	

This means

Classical info

Qubits
$2 n$

1 qubit
$2 n$
n/2-5 entangled qubits (at least)

This means

Protocol (With loss)

Classical info

Qubits
$2 n$

1 qubit
e.g. $n=1 k B$

Attack
$2 n$
n/2-5 entangled qubits (at least)

This means

Classical info

Qubits
e.g. $n=1 k B$

Qubits
$2 n$

1 qubit
n/2-5 entangled qubits (at least)

This means

Protocol (With loss)

Classical info

Qubits
e.g. $n=1 k B$

Qubits

Attack
$2 n$
n/2-5 entangled qubits (at least)

This means

Classical info

Qubits
1 qubit
e.g. $n=1 k B$

Qubits
$2 n$
n/2-5 entangled qubits (at least)
4.000 entangled qubits

This means

Protocol
Attack
(With loss)

Classical info

Qubits
1 qubit
e.g. $n=1 k B$

Qubits
$2 n$
n/2-5 entangled qubits (at least)
4.000 entangled qubits

This means

Protocol (With loss)

Classical info

Quits
e.g. $n=1 k B$

Quits
$2 n$

1 quit
n/2-5 entangled quits (at least)
4.000 entangled quits

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

$$
\eta \geqslant \frac{1}{2}
$$

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

The results can be extended to multiple bases and we show that is more loss-tolerant

Thanks for you attention!

Llorenç Escolà Farràs, PhD candidate
l.escolafarras@uva.nl

Universiteit van Amsterdam

