

Single-qubit loss-tolerant quantum position verification protocol secure against entangled attackers

Llorenç Escolà Farràs, and Florian Speelman

l.escolafarras@uva.nl

UNIVERSITEIT VAN AMSTERDAM

What is Position Verification?

position

But...

Universal attack

No-cloning theorem

No-cloning theorem

Position Verification (PV)

A concrete QPV protocol

 $\mathrm{QPV}_{\mathrm{BB84}}$

 $\mathrm{QPV}_{\mathrm{BB84}}$

 $\mathrm{QPV}_{\mathrm{BB84}}$

 $\mathrm{QPV}_{\mathrm{BB84}}$

 $\mathrm{QPV}_{\mathrm{BB84}}$

 $\mathrm{QPV}_{\mathrm{BB84}}$

Attacks

If no pre-shared entanglement [TFKW13]:

If no pre-shared entanglement [TFKW13]: $\mathbb{P}_{attack} \leq \cos^2\left(rac{\pi}{8}
ight)$

If no pre-shared entanglement [TFKW13]: $\mathbb{P}_{attack} \le \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$

All quantum position verification protocols can be attacked... [BCFGGOS11]

All quantum position verification protocols can be attacked... [BCFGGOS11]

...the best know general attack requires exponential amount of pre-shared entanglement.

All quantum position verification protocols can be attacked... [BCFGGOS11]

...the best know general attack requires exponential amount of pre-shared entanglement.

Goal: easy protocol which is very difficult to attack.

slow quantum info: ~2/3c

slow quantum info: ~2/3c

 V_1 B $x \in \{0,1\}$

time

time

time

Step 1. Let's analyze the loss

Given an error p_{err} , the prover is going to be correct w.p.

Security: unentangled attackers

Security: unentangled attackers

Goal: to upper bound attackers' probof answering correctly $\, q_{
m C} \,$

 $\mathrm{QPV}_{\mathrm{BB84}}^{\eta}$ Goal: to upper bound attackers' probof answering correctly $\, q_{
m C} \,$ Security: unentangled attackers V_0 V_1 $|\phi
angle$ $x \in \{0,1\}$ В time

In experimental parameters, the result translates to

p_{err}

But still insecure if the attackers pre-share one EPR pair

But still insecure if the attackers pre-share one EPR pair

Step 2. Using Step 1 to fix it

Extension proven secure [BCS22]

 by attackers that pre-share entanglement, and

Extension proven secure [BCS22]

- 1. by attackers that pre-share entanglement, and
- 2. arbitrary slow quantum information

Previous result with loss

time

If

• number of pre-shared qubits \leq n/2-5 (ENTANGLED attackers),

If

- number of pre-shared qubits \leq n/2-5 (ENTANGLED attackers),
- quantum info arbitrarily slow,

- number of pre-shared qubits \leq n/2-5 (ENTANGLED attackers),
- quantum info arbitrarily slow,
- photon loss

If

- number of pre-shared qubits \leq n/2-5 (ENTANGLED attackers),
- quantum info arbitrarily slow,
- photon loss

If

- quantum info arbitrarily slow,
- photon loss

If

the protocol is still SECURE

- quantum info arbitrarily slow,
- photon loss

If

the protocol is still SECURE

Protocol

Protocol

(With loss)

Protocol (With loss)

Classical info

Protocol (With loss)

2n

Qubits

This means	Protocol (With loss)	E Attack
Classical info	2n	2n
Qubits	1 qubit	

This means			
	Protocol (With loss)	Attack	
Classical info	2n	2n	
Qubits	1 qubit	n/2-5 entangled qubits (at least)	
e.g. n=1kB			

This means	Protocol (With loss)	E E Attack
Classical info	2n	2n
Qubits	1 qubit	n/2-5 entangled qubits (at least)
e.g. n=1kB		

Qubits

This means	Protocol (With loss)	ε κ κ κ κ κ κ κ κ κ κ κ κ κ
Classical info	2n	2n
Qubits	1 qubit	n/2-5 entangled qubits (at least)
e.g. n=1kB		
Qubits	1 qubit	
This means	Protocol (With loss)	E Attack
----------------	-------------------------	-----------------------------------
Classical info	2n	2n
Qubits	1 qubit	n/2-5 entangled qubits (at least)
e.g. n=1kB		
Qubits	1 qubit	4.000 entangled qubits

This means		
	Protocol (With loss)	Attack
Classical info	2n	2n
Qubits	1 qubit	n/2-5 entangled qubits (at least)
e.g. n=1kB		
Qubits	1 qubit "	4.000 entangled qubits

This means			
	Protocol (With loss)	Attack	
Classical info	2n	2n	
Qubits	1 qubit	n/2-5 entangled qubits (at least)	
e.g. n=1kB			
Qubits	1 qubit "()"	4.000 entangled qubits	

The results can be extended to **multiple bases** and we show that is **more loss-tolerant** The results can be extended to **multiple bases** and we show that is **more loss-tolerant**

The results can be extended to **multiple bases** and we show that is **more loss-tolerant**

Thanks for you attention!

Llorenç Escolà Farràs, PhD candidate

l.escolafarras@uva.nl

X

Universiteit van Amsterdam

