Fiat-Shamir for Proofs Lacks a Proof Even in the Presence of Shared Entanglement

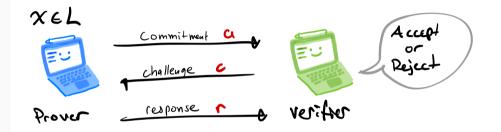
QCrypt 2023

Frédéric Dupuis¹ **Philippe Lamontagne**² Louis Salvail¹ August 17, 2023

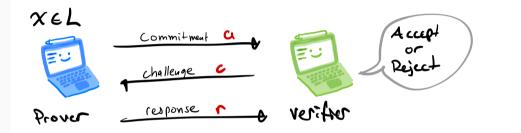
¹Université de Montréal

²National Research Council Canada

Σ -Protocols

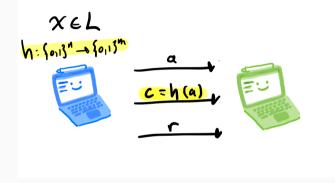


Σ -Protocols

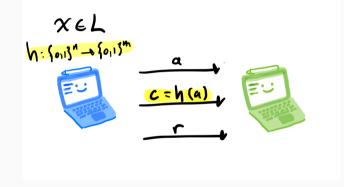


Public coins c uniform in {0, 1}^m **Special Soundness** If $x \notin L$, $Pr_c[accept] = \frac{1}{2^m}$ **Correctness** If $x \in L$, accept

Fiat-Shamir Transform

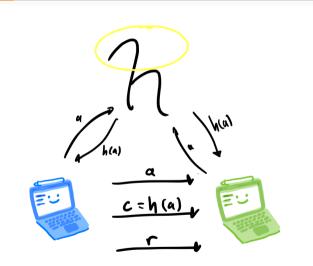


Fiat-Shamir Transform

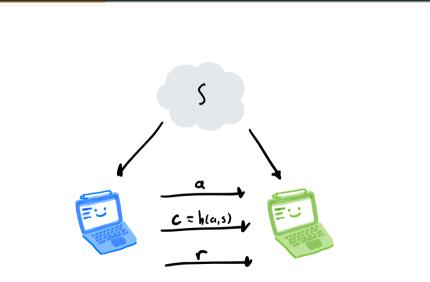


Universal: preserves soundness for all Σ -protocols h(a) should be unpredictable (random and independent of a)

In the Random Oracle Model



In the Common Reference String Model



Soundness is preserved in ROM & QROM¹

¹Don, Fehr, Majenz, and Schaffner, "Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model".

- Soundness is preserved in ROM & QROM¹
- CRS: unsound for arguments². There are computationally sound proof systems such that FS transform is not sound

²Goldwasser and Kalai, "On the (in) security of the Fiat-Shamir paradigm".

¹Don, Fehr, Majenz, and Schaffner, "Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model".

- Soundness is preserved in ROM & QROM¹
- CRS: unsound for arguments². There are computationally sound proof systems such that FS transform is not sound
- CRS: unsound for proof³. There are proofs such that the security of FS cannot be shown by black-box reduction to a standard assumption.

²Goldwasser and Kalai, "On the (in) security of the Fiat-Shamir paradigm".

¹Don, Fehr, Majenz, and Schaffner, "Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model".

³Bitansky, Dachman-Soled, Garg, Jain, Kalai, López-Alt, and Wichs, "Why "fiat-shamir for proofs" lacks a proof".

- Soundness is preserved in ROM & QROM¹
- CRS: unsound for arguments². There are computationally sound proof systems such that FS transform is not sound
- CRS: unsound for proof³. There are proofs such that the security of FS cannot be shown by black-box reduction to a standard assumption.
- Positive results for *non-universal* FS in the CRS model.

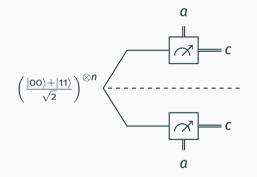
¹Don, Fehr, Majenz, and Schaffner, "Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model".

²Goldwasser and Kalai, "On the (in) security of the Fiat-Shamir paradigm".

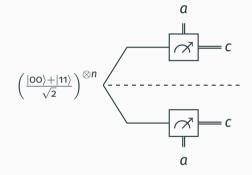
³Bitansky, Dachman-Soled, Garg, Jain, Kalai, López-Alt, and Wichs, "Why "fiat-shamir for proofs" lacks a proof".

Can we have universality in the quantum world?

Quantum Entanglement as a Random Oracle?



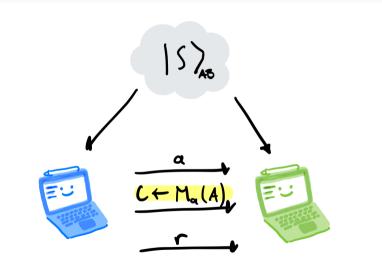
Quantum Entanglement as a Random Oracle?

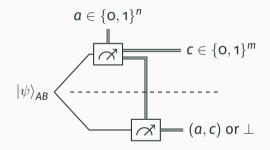


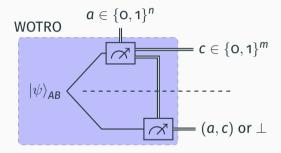
Oracle-like properties

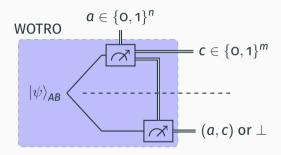
- Uniformity: both get same random c
- Independence: mutually unbiased bases

The Common Reference Quantum State Model

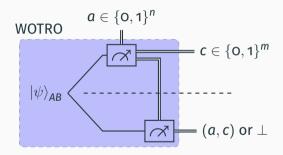








Security (δ -Avoiding) For any $f: \{0,1\}^n \rightarrow \{0,1\}^m$, $\Pr[c = f(a)] \le 1 - \delta$



Security (δ -Avoiding) For any $f: \{0,1\}^n \rightarrow \{0,1\}^m$, $\Pr[c = f(a)] \le 1 - \delta$

 \implies **Fiat-Shamir for** Σ **-protocols** Avoids bad challenge function of

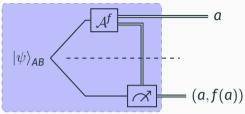
special sound proofs.

Theorem

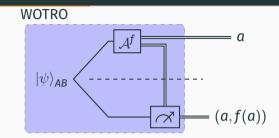
There is no non-interactive WOTRO protocol using pre-shared entanglement that avoids every $f : \{0,1\}^n \rightarrow \{0,1\}^m$.

• \mathcal{A}^f hits a random function $f: \{0,1\}^n \to \{0,1\}^m.$

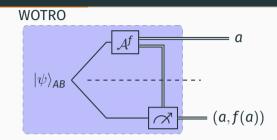
WOTRO



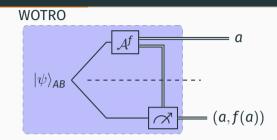
- \mathcal{A}^f hits a random function $f: \{0, 1\}^n \rightarrow \{0, 1\}^m$.
- Uses the POVM $\{N_c^a\}_{c \in \{0,1\}^m}$ of honest prover on input $a \in \{0,1\}^n$.



- \mathcal{A}^f hits a random function $f: \{0, 1\}^n \rightarrow \{0, 1\}^m$.
- Uses the POVM $\{N_c^a\}_{c \in \{0,1\}^m}$ of honest prover on input $a \in \{0,1\}^n$.
- Goal: observe $N_{f(a)}^{a}$



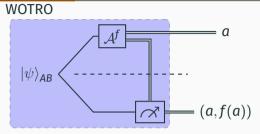
- \mathcal{A}^f hits a random function $f: \{0, 1\}^n \rightarrow \{0, 1\}^m$.
- Uses the POVM $\{N_c^a\}_{c \in \{0,1\}^m}$ of honest prover on input $a \in \{0,1\}^n$.
- Goal: observe $N_{f(a)}^{a}$



- \mathcal{A}^f hits a random function $f: \{0,1\}^n \to \{0,1\}^m$.
- Uses the POVM $\{N_c^a\}_{c \in \{0,1\}^m}$ of honest prover on input $a \in \{0,1\}^n$.
- Goal: observe $N_{f(a)}^{a}$

By Ahlswede and Winter's operator Chernoff bound,

$$\mathbb{E}_{f}[N_{f(a)}^{a}] = \frac{1}{2^{m}}\mathbb{I} \implies \Pr_{f}\left[\frac{1}{2^{n}}\sum_{a\in\{0,1\}^{n}}N_{f(a)}^{a} \leq (1+\eta)\frac{1}{2^{m}}\mathbb{I}\right] \leq \operatorname{negl}(n-m)$$

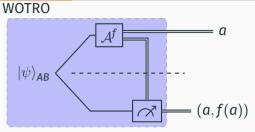


Тł

- \mathcal{A}^f hits a random function $f: \{0,1\}^n \to \{0,1\}^m$.
- Uses the POVM $\{N_c^a\}_{c \in \{0,1\}^m}$ of honest prover on input $a \in \{0,1\}^n$.
- Goal: observe $N_{f(a)}^{a}$

$$\mathbb{E}_{f}[N_{f(a)}^{a}] = \frac{1}{2^{m}}\mathbb{I} \implies \Pr_{f}\left[\frac{1}{2^{n}}\sum_{a\in\{0,1\}^{n}}N_{f(a)}^{a} \nleq (1+\eta)\frac{1}{2^{m}}\mathbb{I}\right] \le \operatorname{negl}(n-m)$$

his means that $\left\{\frac{2^{m}}{2^{n}(1+\eta)}N_{f(a)}^{a}\right\}_{a}$ (almost) forms a POVM.



What about computational security?

Theorem

There is no non-interactive WOTRO protocol using pre-shared entanglement whose security can be proven from a **1** cryptographic game assumption using a **2** fully black-box reduction.

Oryptographic Games

A cryptographic game assumption $\mathcal{G} = (\mathcal{C}, p)$ is composed of a challenger \mathcal{C} and a probability p.

$$b \leftarrow \mathcal{C} \rightleftarrows \mathcal{A}$$

Game is secure if for any efficient A, $Pr[b = 1] \le p + negl(n)$

Oryptographic Games

A cryptographic game assumption $\mathcal{G} = (\mathcal{C}, p)$ is composed of a challenger \mathcal{C} and a probability p.

$$b \leftarrow C \rightleftharpoons \mathcal{A}$$

Game is secure if for any efficient A, $Pr[b = 1] \le p + negl(n)$

Search games (p = 0)

- LWE
- preimage resistance
- collision resistance
- EUF-CMA

Oryptographic Games

A cryptographic game assumption $\mathcal{G} = (\mathcal{C}, p)$ is composed of a challenger \mathcal{C} and a probability p.

$$b \leftarrow \mathcal{C} \xleftarrow{\mathcal{A}} \mathcal{A}$$

Game is secure if for any efficient A, $Pr[b = 1] \le p + negl(n)$

Search games (p = 0)

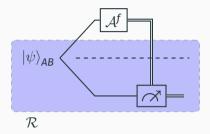
- LWE
- preimage resistance
- collision resistance
- EUF-CMA

Guessing games $(p = \frac{1}{2})$

- DLWE
- IND-CCA
- pseudorandomness

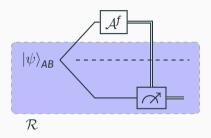
Fully Black-Box Reductions

Reductions from WOTRO...

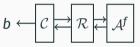


Fully Black-Box Reductions

Reductions from WOTRO...



...to cryptographic game (C, p) \mathcal{R} plays the game with C and has input/output access to \mathcal{A}^f



If adversary \mathcal{A}^f wins with probability $\frac{1}{\operatorname{poly}(n)}$,

$$\Pr[b=1] \ge p + \frac{1}{\operatorname{poly}(n)}$$

Simulation

Adversary $\{\mathcal{A}^f\}_f$ is simulatable: $\exists \text{ Sim } \forall \text{ PPT } \mathcal{D}$,

$$\langle \mathcal{D}
ightarrow \mathcal{A}^f
angle pprox \langle \mathcal{D}
ightarrow \mathsf{Sim}
angle$$

Simulation

Adversary $\{A^f\}_f$ is simulatable: \exists Sim \forall PPT \mathcal{D} ,

$$\langle \mathcal{D}
ightarrow \mathcal{A}^f
angle pprox \langle \mathcal{D}
ightarrow \mathsf{Sim}
angle$$

If $\mathcal{R}^{\mathcal{A}^f}$ breaks game \mathcal{G} , then \mathcal{R}^{Sim} also breaks game \mathcal{G} , but efficiently.

Other results

Applications of WOTRO impossibility

- Universal Fiat-Shamir is black-box impossible in the CRQS model
- Tasks that imply WOTRO are impossible, e.g. strenghtening of quantum lightning

Other results

Applications of WOTRO impossibility

- Universal Fiat-Shamir is black-box impossible in the CRQS model
- Tasks that imply WOTRO are impossible, e.g. strenghtening of quantum lightning

Non-game assumption for universal Quantum Fiat-Shamir

Secure quantum protocol based on the hardness of producing a superposition of many collisions over many hash functions. (Classical: based on subexp obfuscation & OWF⁴)

⁴Kalai, G. N. Rothblum, and R. D. Rothblum, "From Obfuscation to the Security of Fiat-Shamir for Proofs".

Thank you!