
Obfuscation of Pseudo-
Deterministic Quantum Circuits

James Bartusek

Fuyuki Kitagawa           

Ryo Nishimaki

Takashi Yamakawa

UC Berkeley

NTT Social Informatics Laboratories

NTT Social Informatics Laboratories

NTT Social Informatics Laboratories



𝐶

𝒪(𝐶)

• Scrambles a program to hide implementation details, while 
maintaining functionality

• A basic tool for software protection: useful against reverse-
engineering, intellectual property theft, and piracy

• Indistinguishability obfuscation (∀ 𝐶1 ≡ 𝐶2, 𝒪 𝐶1 ≈𝑐 𝒪 𝐶2 ) has 
become a “central hub” of cryptography: Fully-homomorphic 
encryption, functional encryption, public-key quantum money…

• Known from (pre-quantum) well-founded assumptions …, [Jain, Lin, 
Sahai 21], and exist post-quantum candidates

Background: Classical obfuscation



Background: Quantum obfuscation

𝑄

𝒪(𝑄)

• Definitions, impossibilities, applications [Alagic, Fefferman 16]

• Constructions:

• Perfect obfuscation for limited circuit classes [Alagic, Jeffrey, 
Jordan 14], [Broadbent, Kazmi 20]

• Obfuscation for circuits with logarithmically many non-Clifford 
gates, from post-quantum classical iO [BK20]

• Obfuscation for null quantum circuits (and applications) in the 
classical oracle model [B, Malavolta 22]



Is it possible to obfuscate general-
purpose quantum computation?



Main Result

Pseudo-deterministic quantum circuit 𝑄:
• Classical inputs and outputs
• For each input 𝑥, exists 𝑦 s.t. Pr 𝑄 𝑥 = 𝑦 = 1 − negl

Obfuscation of polynomial-size pseudo-
deterministic quantum circuits in the classical 
oracle model (assuming learning with errors)

Prominent example: Shor’s algorithm



QuObf(𝑄) 𝜓𝑄 , ClObf(𝑓𝑄)

Eval(|𝜓𝑄⟩, ClObf 𝑓𝑄 , 𝑥) 𝑄(𝑥)

Adv𝑓𝑄(|𝜓𝑄⟩) ≈ Sim𝑄

Main Result

Obfuscation of polynomial-size pseudo-
deterministic quantum circuits in the classical 
oracle model (assuming learning with errors)

Black-box 
obfuscation of 𝑄



Adv𝑓𝑄(|𝜓𝑄⟩) ≈ Sim𝑄

Main Result

Obfuscation of polynomial-size pseudo-
deterministic quantum circuits in the classical 
oracle model (assuming learning with errors)

Black-box 
obfuscation of 𝑄

Candidate indistinguishability obfuscation of 𝑄 ∶ 𝜓𝑄 , iO(𝑓𝑄)



Applications
• Functional encryption for pseudo-deterministic quantum circuits
• Copy-protection for pseudo-deterministic quantum circuits

Main Result

Obfuscation of polynomial-size pseudo-
deterministic quantum circuits in the classical 
oracle model (assuming learning with errors)



Starting point: Quantum fully-homomorphic 
encryption

ct𝑄 = Enc 𝑄 ct𝑄(𝑥) = Enc(𝑄(𝑥))
Eval

QuObf 𝑄 : ct𝑄 = Enc 𝑄 , ClObf(PVer−then−decrypt[ct𝑄, sk])

PVer−then−decrypt ct𝑄 , sk :

• Take (𝑥, ct𝑄(𝑥), 𝜋) as input

• Check that 𝜋 is a proof that ct𝑄(𝑥) ← Eval(ct𝑄 , 𝑥)

• If so, output Dec(sk, ct𝑄(𝑥))

[Mahadev 18]

Can’t give out sk in the clear

, 𝑥



Main building block: Publicly-verifiable QFHE

• Gen → pk, sk

• Enc pk, 𝑄 → ct𝑄 , vk

• Eval vk, ct𝑄 , 𝑥 → ct𝑄(𝑥), 𝜋

• Ver vk, ct𝑄 , 𝑥, ct𝑄(𝑥), 𝜋 → ⊤/⊥

• Dec sk, ct𝑄(𝑥) → 𝑄(𝑥)

[Mahadev 18] classical verification?
Must be classical

Soundness: for any QPT adversary 

Adv vk, ct𝑄 → 𝑥, ct𝑄(𝑥), 𝜋 , if Ver

accepts then Dec sk, ct𝑄(𝑥) = 𝑄(𝑥)

[Alagic, Dulek, Schaffner, Speelman 17] VQFHE?



Why is prior work insufficient?

1. [ADSS17] verification requires the QFHE secret key

2. [Mah18]
• Not publicly verifiable
• Only applies to (pseudo)-deterministic quantum computation (BQP)
• Even if 𝑄 is (pseudo)-deterministic, ct𝑄(𝑥) ← Eval(ct𝑄 , 𝑥) is a 

randomized (sampBQP) computation

3. [Chung, Lee, Lin, Wu 22] construct classical verification for sampBQP
computation, but with 1/poly soundness       

Improving on this is a nice open problem



High-level approach

1. Let |𝜓𝑥⟩ be the history state of the QFHE computation ct𝑄 , 𝑥 → ct𝑄(𝑥). Evaluator 

commits to (many copies of) |𝜓𝑥⟩ using a Pauli Functional Commitment scheme.
➢ Classical commitment to quantum state that supports opening to Z and X measurements
➢ Used to overcome the issue that measurement protocol in Step 2 is not reusably sound
➢ Require a “publicly-decodable” version: extend the [Brakerski, Christiano, Mahadev, 

Vazirani, Vidick 18] framework to support high-dimensional coset states

2. Evaluator and oracle interact to run a measurement protocol [Mah18, ACGH20, CLLW22, 
B21] on the copies of |𝜓𝑥⟩. Oracle obtains local Hamiltonian measurements from some 

copies and output samples {ct𝑄(𝑥)
𝑖 }𝑖 from the others.

3. Oracle runs Hamiltonian verifier. If accepts, oracle runs Majority under QFHE 

{ct𝑄(𝑥)
𝑖 }𝑖 → ct𝑄(𝑥) and returns ct𝑄(𝑥). Proof 𝜋: transcript between evaluator and oracle.

QFHE evaluator with ct𝑄, 𝑥 interacts with classical 

oracle to produce output ct𝑄(𝑥) and proof 𝜋



Open Problems 

• The commitment key for our Pauli functional commitment is 
quantum. Can we make this classical?

• Can we prove security from (post-quantum) indistinguishability 
obfuscation?

• Can we obfuscate larger classes of quantum circuits?
• Quantum sampling circuits?
• Quantum maps?
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