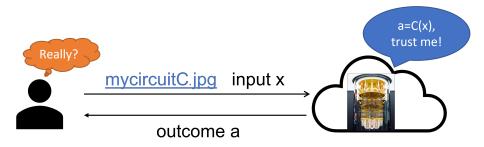
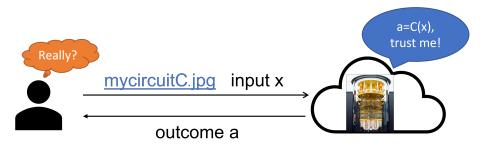
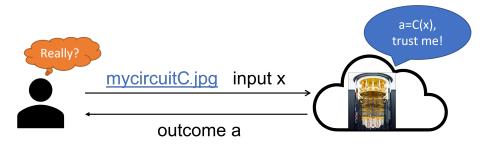

Quantum delegation with an off-the-shelf device


Arthur Mehta

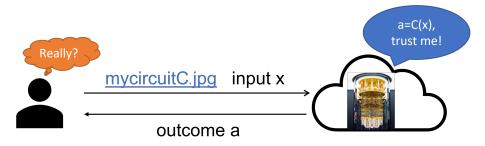

University of Ottawa

Joint work with Anne Broadbent and Yuming Zhao, based on arXiv:2304.03448



Client: verifiable delegation

- I want to be convinced of the correctness,
- but I am not able to compare the results to the predictions

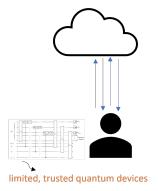


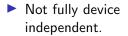
Client: verifiable delegation

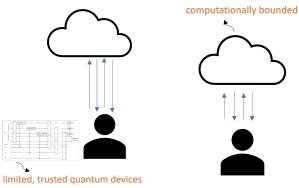
- I want to be convinced of the correctness,
- but I am not able to compare the results to the predictions

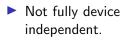
Server: zero-knowledge proof

- We need to convince our clients that we are honest,
- but we don't want to reveal any inner-workings

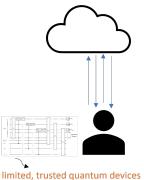



Client: verifiable delegation

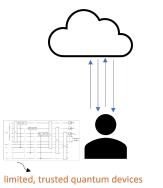

- I want to be convinced of the correctness,
- but I am not able to compare the results to the predictions

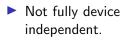

Server: zero-knowledge proof

- We need to convince our clients that we are honest,
- but we don't want to reveal any inner-workings
- Goal: zero-knowledge verifiable delegation of quantum computations



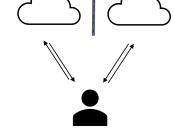
 Computational and hardness assumptions.





 Not fully device independent. Computational and hardness assumptions.

computationally bounded


- Difficult to enforce isolation.
- Requires 6 or more servers for zero-knowledge.

 Computational and hardness assumptions.

computationally bounded

- Difficult to enforce isolation.
- Requires 6 or more servers for zero-knowledge.

Our model: a single quantum server + an untrusted device, all in a single round

A client wants to delegate a quantum computation $\mathcal{C}(x)$

A client wants to delegate a quantum computation C(x)

Set-up: Purchase an off-the-shelf based on |x|.

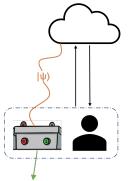
- Shares an entangled state with the server.
- Can make measurements on few qubits.

A client wants to delegate a quantum computation C(x)

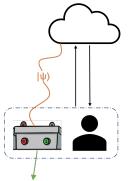
Set-up: Purchase an off-the-shelf based on |x|.

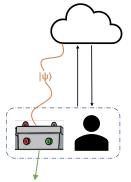
- Shares an entangled state with the server.
- Can make measurements on few qubits.
- Verify: Play a game G_x :
 - Send question q to server and press some buttons on OTS device.
 - Compare server response with measurement results from device.

A client wants to delegate a quantum computation C(x)

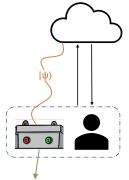

Set-up: Purchase an off-the-shelf based on |x|.

- Shares an entangled state with the server.
- Can make measurements on few qubits.
- Verify: Play a game G_x :
 - Send question q to server and press some buttons on OTS device.
 - Compare server response with measurement results from device.


Note The shared state only depends on |x|



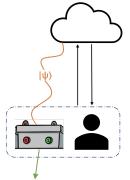
- Small: measures 6 qubits
- Untrusted: DI techniques
- Off-the-shelf: entangled state, only depends on the size of the problem



- Small: measures 6 qubits
- Untrusted: DI techniques
- Off-the-shelf: entangled state, only depends on the size of the problem

1. Circuit-to-Hamiltoniam construction $\mathcal{C} \rightarrow H$: \mathcal{C} accepts $\Leftrightarrow \lambda_0(H)$ is small

- Small: measures 6 qubits
- Untrusted: DI techniques
- Off-the-shelf: entangled state, only depends on the size of the problem



- Small: measures 6 qubits
- Untrusted: DI techniques
- Off-the-shelf: entangled state, only depends on the size of the problem

- 1. Circuit-to-Hamiltoniam construction $\mathcal{C} \rightarrow H$: \mathcal{C} accepts $\Leftrightarrow \lambda_0(H)$ is small
- 2. Teleport the ground state ρ of H

A measurement device

- Small: measures 6 qubits
- Untrusted: DI techniques
- Off-the-shelf: entangled state, only depends on the size of the problem

- 1. Circuit-to-Hamiltoniam construction $C \rightarrow H: C$ accepts $\Leftrightarrow \lambda_0(H)$ is small
- 2. Teleport the ground state ρ of H

3. Estimates the ground energy of H

- Accepts if $\lambda_0(H)$ is low
- Rejects if $\lambda_0(H)$ is high

Main Results

Theorem (Broadbent, M, Zhao 2023)

All efficient quantum computations have verifiable delegation protocols in OTS.

Main Results

Theorem (Broadbent, M, Zhao 2023)

All efficient quantum computations have verifiable delegation protocols in OTS.

Corollary

Every language in QMA has a two-prover one-round zero-knowledge proof.

Main Results

Theorem (Broadbent, M, Zhao 2023)

All efficient quantum computations have verifiable delegation protocols in OTS.

Corollary

Every language in QMA has a two-prover one-round zero-knowledge proof.

Can amplified to constant completeness-soundness gap while preserving ZK.

Problem

Verifier's Task: Certify many EPR pairs.

Problem

Verifier's Task: Certify many EPR pairs. Obstruction: The OTS device can only measure up to 6 qubits.

Problem

Verifier's Task: Certify many EPR pairs. Obstruction: The OTS device can only measure up to 6 qubits.

Problem

Server's Task: Provide a zero-knowledge proof of honest behaviour.

Problem

Verifier's Task: Certify many EPR pairs. Obstruction: The OTS device can only measure up to 6 qubits.

Problem

Server's Task: Provide a zero-knowledge proof of honest behaviour. Obstruction: The honest server teleports the entire ground state ρ .

Technical Contributions (Informal)

Theorem

The low-weight Pauli braiding "self-test" n-EPR pairs using 6-qubit measurements.

Technical Contributions (Informal)

Theorem

The low-weight Pauli braiding "self-test" n-EPR pairs using 6-qubit measurements.

Theorem

For every $L \in \mathrm{QMA}$ there exists a family of verification circuits V_x s.t

 \blacktriangleright $V_x \mapsto H_x$ an XZ-Hamiltonian,

if x ∈ L_{yes} and |S| ≤ 6 then the reduced density tr_S(ρ) can be obtained in poly-time.

Technical Contributions (Informal)

Theorem

The low-weight Pauli braiding "self-test" n-EPR pairs using 6-qubit measurements.

Theorem

For every $L \in \mathrm{QMA}$ there exists a family of verification circuits V_x s.t

 \blacktriangleright $V_x \mapsto H_x$ an XZ-Hamiltonian,

if x ∈ L_{yes} and |S| ≤ 6 then the reduced density tr_S(ρ) can be obtained in poly-time.

Theorem

Very Informal: Prove an enhanced version of Gowers Hatami theorem from approximate representation theory.

Remarks and Open Problems

- 1. Noise tolerant device independent techniques.
 - LWPBT can be won well even with constant noise on EPR pairs.
 - The LWPBT has alot of entanglement left over after the test.

Remarks and Open Problems

- 1. Noise tolerant device independent techniques.
 - LWPBT can be won well even with constant noise on EPR pairs.
 - ► The LWPBT has alot of entanglement left over after the test.
- 2. We know QMA \subseteq OTS. Is it possible OTS = MIP*?

Remarks and Open Problems

- 1. Noise tolerant device independent techniques.
 - LWPBT can be won well even with constant noise on EPR pairs.
 - The LWPBT has alot of entanglement left over after the test.
- 2. We know $QMA \subseteq OTS$. Is it possible $OTS = MIP^*$?
 - What if we lift the constant measurement requirement?
- 3. Applications to PoQK via self-testing.
 - Can we show our overall protocol self-tests for ground states?