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Coset Operator Measure Definition

Abelian case:

C IS /E (Fuld o g) (V) (Tl og)(Vd,,,. ,(8H,7),

where Fy is the group Fourier transform (Fy|¢))(v) = [, 1(
Compact case:

GATE)Y) = dy / (&0 8], Ymn) g (tmns 5 © [8]) )

Ym,n Ym,n

where [g] is a fixed representative of gH, (v, ¢),, = [, ¥(h)¢(h)dyh, and d[g] is the induced
Haar measure on the symmetric space of classes.
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Winning Probability Bound: Proof Technique
Overlap Lemma?®

Let P!, ..., PN be positive operators and =, . .., my be mutually
orthogonal permutations. Then,

[ < S ]

ForH,K <G,ECG,F C G, q€ G,y € G. If Gcompact,
HAH(G/H X {Yma})AK (EqK K x k)“ < sup \/dvﬂH(ngEK)
geG

If G abelian,
[4"(G/H x Fuma)A¥ (EqK /K x K)|| < sup /1 (H 1 @K )15 (F)
ge
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