Group Coset Monogamy Games

and an Application to Device-Independent QKD

Eric Culf Thomas Vidick Victor V. Albert

arXiv2212.03935

QCRYPT 24 23

College Park, Maryland August 18th 2023

- Group Hilbert spaces $L^{2}(G)$ often naturally represent quantum spaces
${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
- Group Hilbert spaces $L^{2}(G)$ often naturally represent quantum spaces
- Qubits: $G=\mathbb{Z}_{2}^{n}$

[^0]- Group Hilbert spaces $L^{2}(G)$ often naturally represent quantum spaces
- Qubits: $G=\mathbb{Z}_{2}^{n}$
- Rotational symmetries: $G=\mathrm{SO}_{3}$ or $\mathrm{U}_{1}{ }^{1}$
(a) Planar rotor U_{1}

(b) Rigid rotor SO_{3}

[^1]- Group Hilbert spaces $L^{2}(G)$ often naturally represent quantum spaces
- Qubits: $G=\mathbb{Z}_{2}^{n}$
- Rotational symmetries: $G=\mathrm{SO}_{3}$ or $\mathrm{U}_{1}{ }^{1}$
- Optical modes: $G=\mathbb{R}^{n}$
(a) Planar rotor U_{1}

(b) Rigid rotor SO_{3}

[^2]- Group Hilbert spaces $L^{2}(G)$ often
(a) Planar rotor U_{1}

(b) Rigid rotor SO_{3}

[^3]- Group Hilbert spaces $L^{2}(G)$ often
(a) Planar rotor U_{1}

(b) Rigid rotor SO_{3}

[^4]- Group Hilbert spaces $L^{2}(G)$ often
(a) Planar rotor U_{1}

(b) Rigid rotor SO_{3}

Irreducible representation $\gamma: H \rightarrow \mathcal{U}\left(d_{\gamma}\right)$

$$
\begin{aligned}
& \left|g H^{\gamma}\right\rangle=\sqrt{\frac{1}{|H|}} \sum_{h \in H} \dot{\gamma} \\
& \text { Subgroup } H \subseteq G
\end{aligned}
$$

[^5]- Group Hilbert spaces $L^{2}(G)$ often
(a) Planar rotor U_{1}
 naturally represent quantum spaces
- Qubits: $G=\mathbb{Z}_{2}^{n}$
- Rotational symmetries: $G=\mathrm{SO}_{3}$ or $\mathrm{U}_{1}{ }^{1}$
- Optical modes: $G=\mathbb{R}^{n}$
(b) Rigid rotor SO_{3}

Irreducible representation $\gamma: H \rightarrow \mathcal{U}\left(d_{\gamma}\right)$

$$
\begin{aligned}
& \left|g H_{m, n}^{\gamma}\right\rangle=\sqrt{\frac{d_{\gamma}}{|H|}} \sum_{h \in H} \gamma_{m, n}(h)|\dot{\mathcal{G}} h\rangle \\
& \text { Subgroup } H \subseteq G
\end{aligned} \quad \begin{aligned}
& \text { Coset representative } g \in G \\
& \text { Matrix indices } 1 \leq m, n \leq d_{\gamma}
\end{aligned}
$$

[^6]- Group Hilbert spaces $L^{2}(G)$ often
(a) Planar rotor U_{1}

(b) Rigid rotor SO_{3} naturally represent quantum spaces
- Qubits: $G=\mathbb{Z}_{2}^{n}$
- Rotational symmetries: $G=\mathrm{SO}_{3}$ or $\mathrm{U}_{1}{ }^{1}$
- Optical modes: $G=\mathbb{R}^{n}$

Irreducible representation $\gamma: H \rightarrow \mathcal{U}\left(d_{\gamma}\right)$

$$
\begin{aligned}
& \left|g H_{m, n}^{\gamma}\right\rangle=\sqrt{\frac{d_{\gamma}}{|H|}} \sum_{h \in H} \gamma_{m, n}(h)|\dot{\mathcal{g}} h\rangle \\
& \text { Subgroup } H \subseteq G
\end{aligned} \quad \begin{aligned}
& \text { Coset representative } g \in G \\
& \text { Matrix indices } 1 \leq m, n \leq d_{\gamma}
\end{aligned}
$$

For each $H,\left|g H_{m, n}^{\gamma}\right\rangle$ forms orthonormal basis over $\left(g H, \gamma_{m, n}\right) \in G / H \times \hat{H}$

[^7]
Various error-correcting codes have coset states as code and error words

[^8]
Various error-correcting codes have coset states as code and error words

[^9]${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
${ }^{4}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
5^{5} Braunstein, 1998, "Quantum error correction for communication with linear optics".

Various error-correcting codes have coset states as code and error words

Code	G	$H \cong$
CSS 2	\mathbb{Z}_{2}^{n}	\mathbb{Z}_{2}^{k}

[^10]Various error-correcting codes have coset states as code and error words

Code	G	$H \cong$
CSS 2	\mathbb{Z}_{2}^{n}	\mathbb{Z}_{2}^{k}
GKP^{3}	\mathbb{R}	\mathbb{Z}

[^11]Various error-correcting codes have coset states as code and error words

[^12]Various error-correcting codes have coset states as code and error words

Code	G	$H \cong$
CSS 2	\mathbb{Z}_{2}^{n}	\mathbb{Z}_{2}^{k}
GKP 3	\mathbb{R}	\mathbb{Z}
Molecular		SO_{3}
point group		
Analog CSS 5	\mathbb{R}^{n}	\mathbb{R}^{k}

[^13]

- Coset states $\left|g H_{m, n}^{\gamma}\right\rangle$ are well-defined only for finite groups

${ }^{6}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
- Coset states $\left|g H_{m, n}^{\gamma}\right\rangle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory - Compact: Peter-Weyl theorem
- Abelian: Fourier transform

[^14]
Coset States for Infinite Groups

- Coset states $\left|g H_{m, n}^{\gamma}\right\rangle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory - Compact: Peter-Weyl theorem
- Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_{H} d_{H} h$

6

[^15]
Coset States for Infinite Groups

- Coset states $\left|g H_{m, n}^{\gamma}\right\rangle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
- Compact: Peter-Weyl theorem
- Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_{H} d_{H} h$
- We need to replace Dirac deltas with Gaussians (damping)

[^16]
Coset States for Infinite Groups

- Coset states $\left|g H_{m, n}^{\gamma}\right\rangle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
- Compact: Peter-Weyl theorem
- Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_{H} d_{H} h$
- We need to replace Dirac deltas with Gaussians (damping)
- Preserves states but harder to work with rigorously

[^17]- Alternate approach: Generalise only measurement

- Alternate approach: Generalise only measurement
- Measurement in basis of coset states becomes operator-valued measure

$$
A^{H}: \mathscr{B}(G / H \times \hat{H}) \rightarrow \mathcal{B}\left(L^{2}(G)\right) \quad \text { satisfying } \quad \operatorname{Tr}\left(A^{H}(E) \rho\right)=\operatorname{Pr}\left[\left(g H, \gamma_{m, n}\right) \in E\right]
$$

- Alternate approach: Generalise only measurement
- Measurement in basis of coset states becomes operator-valued measure

$$
A^{H}: \mathscr{B}(G / H \times \hat{H}) \rightarrow \mathcal{B}\left(L^{2}(G)\right) \quad \text { satisfying } \quad \operatorname{Tr}\left(A^{H}(E) \rho\right)=\operatorname{Pr}\left[\left(g H, \gamma_{m, n}\right) \in E\right]
$$

- Intuitively $A^{H}(E)=\int_{E}\left|g H_{m, n}^{\gamma}\right\rangle\left\langle g H_{m, n}^{\gamma}\right| d\left(g H, \gamma_{m, n}\right)$

Monogamy-of-Entanglement Games from Coset States
Generalises game of Coladangelo, Liu, Liu, and Zhandry7

[^18]
Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu, Liu, and Zhandry7

[^19]
Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu, Liu, and Zhandry7
(1) Bob and Charlie prepare shared state
${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu, Liu, and Zhandry7
(1) Bob and Charlie prepare shared state
(2) Alice samples subgroup H from a finite set \mathcal{S} and measures with A^{H}

[^20]
Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu, Liu, and Zhandry7
(1) Bob and Charlie prepare shared state
(2) Alice samples subgroup H from a finite set \mathcal{S} and measures with A^{H}
(3) Alice sends H to Bob and Charlie.

[^21]
Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu,
 Liu, and Zhandry7
(1) Bob and Charlie prepare shared state
(2) Alice samples subgroup H from a finite set \mathcal{S} and measures with A^{H}
(3) Alice sends H to Bob and Charlie.
(4) Bob guesses $g H$, Charlie guesses $\gamma_{m, n}$

[^22]
Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu,
 Liu, and Zhandry${ }^{7}$
(1) Bob and Charlie prepare shared state
(2) Alice samples subgroup H from a finite set \mathcal{S} and measures with A^{H}
(3) Alice sends H to Bob and Charlie.
(4) Bob guesses $g H$, Charlie guesses $\gamma_{m, n}$
© Bob and Charlie win if guesses are up to allowed errors E, F

[^23]
Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu, Liu, and Zhandry7
(1) Bob and Charlie prepare shared state
(2) Alice samples subgroup H from a finite set \mathcal{S} and measures with A^{H}
(3) Alice sends H to Bob and Charlie.
(4) Bob guesses $g H$, Charlie guesses $\gamma_{m, n}$
(5) Bob and Charlie win if guesses are up to allowed errors E, F

Theorem

$$
\mathfrak{w}_{\mathrm{G}}(\mathrm{~S}) \leq \mathbb{E}_{i} \sup _{H \in \mathcal{S}, \gamma \in \operatorname{lrr}(H), g \in G} \sqrt{d_{\gamma} \mu_{H}\left(H \cap E g \pi_{i}(H)\right) \mu_{\hat{H}}(F)}
$$

[^24]

The same bound on the winning probability holds!

- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$

${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".
- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states

[^25]- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD

[^26]- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G=\mathbb{R}^{n}$, subgroups are subspaces $P=\operatorname{span}\left\{e_{i_{1}}, \ldots, e_{i_{n / 2}}\right\}$

[^27]- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G=\mathbb{R}^{n}$, subgroups are subspaces $P=\operatorname{span}\left\{e_{i_{1}}, \ldots, e_{i_{n / 2}}\right\}$
- We can identify $\mathbb{R}^{n} / P \cong P^{\perp}, \hat{P} \cong P$

[^28]- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G=\mathbb{R}^{n}$, subgroups are subspaces $P=\operatorname{span}\left\{e_{i_{1}}, \ldots, e_{i_{n / 2}}\right\}$
- We can identify $\mathbb{R}^{n} / P \cong P^{\perp}, \hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates $\left|q+P^{\gamma_{p}}\right\rangle=\int_{P} e^{2 \pi i p \cdot x}|x+q\rangle d x$.

[^29]- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G=\mathbb{R}^{n}$, subgroups are subspaces $P=\operatorname{span}\left\{e_{i_{1}}, \ldots, e_{i_{n / 2}}\right\}$
- We can identify $\mathbb{R}^{n} / P \cong P^{\perp}, \hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates $\left|q+P^{\gamma_{p}}\right\rangle=\int_{P} e^{2 \pi i p \cdot x}|x+q\rangle d x$.
- Measurement is homodyne detection

[^30]- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G=\mathbb{R}^{n}$, subgroups are subspaces $P=\operatorname{span}\left\{e_{i_{1}}, \ldots, e_{i_{n / 2}}\right\}$
- We can identify $\mathbb{R}^{n} / P \cong P^{\perp}, \hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates

$$
\left|q+P^{\gamma_{p}}\right\rangle=\int_{P} e^{2 \pi i p \cdot x}|x+q\rangle d x
$$

- Measurement is homodyne detection
- Damped coset states are squeezed states

[^31]
Open Questions

Open Questions

- Is it possible to make the QKD protocol more practical?
- Is it possible to make the QKD protocol more practical?
- Can monogamy-of-entanglement be used to show DIQKD properties of coherent state protocols?

Group Coset Monogamy Games

and an Application to Device-Independent QKD

Eric Culf Thomas Vidick Victor V. Albert

arXiv2212.03935

QCRYPT 26, 23

College Park, Maryland August 18th 2023

- Group Hilbert spaces $L^{2}(G)$ often
(a) Planar rotor U_{1}

(b) Rigid rotor SO_{3} naturally represent quantum spaces
- Qubits: $G=\mathbb{Z}_{2}^{n}$
- Rotational symmetries: $G=\mathrm{SO}_{3}$ or $\mathrm{U}_{1}{ }^{1}$
- Optical modes: $G=\mathbb{R}^{n}$

Irreducible representation $\gamma: H \rightarrow \mathcal{U}\left(d_{\gamma}\right)$

$$
\begin{aligned}
& \left|g H_{m, n}^{\gamma}\right\rangle=\sqrt{\frac{d_{\gamma}}{|H|}} \sum_{h \in H} \gamma_{m, n}(h)|\dot{\mathcal{g}} h\rangle \\
& \text { Subgroup } H \subseteq G
\end{aligned} \quad \begin{aligned}
& \text { Coset representative } g \in G \\
& \text { Matrix indices } 1 \leq m, n \leq d_{\gamma}
\end{aligned}
$$

For each $H,\left|g H_{m, n}^{\gamma}\right\rangle$ forms orthonormal basis over $\left(g H, \gamma_{m, n}\right) \in G / H \times \hat{H}$

[^32]Various error-correcting codes have coset states as code and error words

Code	G	$H \cong$
CSS 2	\mathbb{Z}_{2}^{n}	\mathbb{Z}_{2}^{k}
GKP 3	\mathbb{R}	\mathbb{Z}
Molecular		SO_{3}
point group		
Analog CSS 5	\mathbb{R}^{n}	\mathbb{R}^{k}

[^33]

Coset States for Infinite Groups

- Coset states $\left|g H_{m, n}^{\gamma}\right\rangle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
- Compact: Peter-Weyl theorem
- Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_{H} d_{H} h$
- We need to replace Dirac deltas with Gaussians (damping)
- Preserves states but harder to work with rigorously

[^34]- Alternate approach: Generalise only measurement
- Measurement in basis of coset states becomes operator-valued measure

$$
A^{H}: \mathscr{B}(G / H \times \hat{H}) \rightarrow \mathcal{B}\left(L^{2}(G)\right) \quad \text { satisfying } \quad \operatorname{Tr}\left(A^{H}(E) \rho\right)=\operatorname{Pr}\left[\left(g H, \gamma_{m, n}\right) \in E\right]
$$

- Intuitively $A^{H}(E)=\int_{E}\left|g H_{m, n}^{\gamma}\right\rangle\left\langle g H_{m, n}^{\gamma}\right| d\left(g H, \gamma_{m, n}\right)$

Monogamy-of-Entanglement Games from Coset States

Generalises game of Coladangelo, Liu, Liu, and Zhandry7
(1) Bob and Charlie prepare shared state
(2) Alice samples subgroup H from a finite set \mathcal{S} and measures with A^{H}
(3) Alice sends H to Bob and Charlie.
(4) Bob guesses $g H$, Charlie guesses $\gamma_{m, n}$
(5) Bob and Charlie win if guesses are up to allowed errors E, F

Theorem

$$
\mathfrak{w}_{\mathrm{G}}(\mathrm{~S}) \leq \mathbb{E}_{i} \sup _{H \in \mathcal{S}, \gamma \in \operatorname{lr}(H), g \in G} \sqrt{d_{\gamma} \mu_{H}\left(H \cap E g \pi_{i}(H)\right) \mu_{\hat{H}}(F)}
$$

[^35]

The same bound on the winning probability holds!

- Monogamy properties can be used to construct one-sided device-independent QKD ${ }^{8}$
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G=\mathbb{R}^{n}$, subgroups are subspaces $P=\operatorname{span}\left\{e_{i_{1}}, \ldots, e_{i_{n / 2}}\right\}$
- We can identify $\mathbb{R}^{n} / P \cong P^{\perp}, \hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates

$$
\left|q+P^{\gamma_{p}}\right\rangle=\int_{P} e^{2 \pi i p \cdot x}|x+q\rangle d x .
$$

- Measurement is homodyne detection
- Damped coset states are squeezed states

[^36]- Is it possible to make the QKD protocol more practical?
- Can monogamy-of-entanglement be used to show DIQKD properties of coherent state protocols?

Abelian case:

$$
\langle\phi| A^{H}(E)|\psi\rangle=\int_{E} \overline{\left(\mathcal{F}_{H}|\phi \circ g\rangle\right)(\gamma)}\left(\mathcal{F}_{H}|\psi \circ g\rangle\right)(\gamma) d_{G / H \times \hat{H}}(g H, \gamma),
$$

where \mathcal{F}_{H} is the group Fourier transform $\left(\mathcal{F}_{H}|\psi\rangle\right)(\gamma)=\int_{H} \psi(h) \overline{\gamma(h)} d h$.

Compact case:

$$
\langle\phi| A^{H}(E)|\psi\rangle=\sum_{\gamma_{m, n}} d_{\gamma} \int_{E_{\gamma_{m, n}}}\left\langle\phi \circ[g], \gamma_{m, n}\right\rangle_{H}\left\langle\gamma_{m, n}, \psi \circ[g]\right\rangle_{H} d[g],
$$

where $[g]$ is a fixed representative of $g H,\langle\psi, \phi\rangle_{H}=\int_{H} \overline{\psi(h)} \phi(h) d_{H} h$, and $d[g]$ is the induced Haar measure on the symmetric space of classes.

Winning Probability Bound: Proof Technique

Overlap Lemma ${ }^{9}$

Let P^{1}, \ldots, P^{N} be positive operators and π_{1}, \ldots, π_{N} be mutually orthogonal permutations. Then,

$$
\left\|\sum_{i} P^{i}\right\| \leq \sum_{i} \max _{j}\left\|\sqrt{P^{j}} \sqrt{P^{\pi_{i}(j)}}\right\|
$$

Lemma

For $H, K \leq G, E \subseteq G, F \subseteq \hat{G}, q \in G, \gamma_{m, n} \in \hat{G}$. If G compact,

$$
\left\|A^{H}\left(G / H \times\left\{\gamma_{m, n}\right\}\right) A^{K}(E q K / K \times \hat{K})\right\| \leq \sup _{g \in G} \sqrt{d_{\gamma} \mu_{H}(H \cap g E K)}
$$

If G abelian,

$$
\left\|A^{H}\left(G / H \times F \gamma_{m, n}\right) A^{K}(E q K / K \times \hat{K})\right\| \leq \sup _{g \in G} \sqrt{\mu_{H}(H \cap g E K) \mu_{\hat{H}}(F)}
$$

[^37]
[^0]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^1]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^2]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^3]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^4]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^5]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^6]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^7]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^8]: ${ }^{2}$ Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ${ }^{4}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 5 Braunstein, 1998, "Quantum error correction for communication with linear optics".

[^9]: ${ }^{2}$ Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".

[^10]: ${ }^{2}$ Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ${ }^{4}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 ${ }^{5}$ Braunstein, 1998, "Quantum error correction for communication with linear optics".

[^11]: ${ }^{2}$ Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ${ }^{4}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 5^{5} Braunstein, 1998, "Quantum error correction for communication with linear optics".

[^12]: 2 Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ${ }^{2}$ Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ${ }^{4}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 5^{5} Braunstein, 1998, "Quantum error correction for communication with linear optics".

[^13]: ${ }^{2}$ Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ${ }^{4}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 5^{5} Braunstein, 1998, "Quantum error correction for communication with linear optics".

[^14]: ${ }^{6}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

[^15]: ${ }^{6}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

[^16]: ${ }^{6}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

[^17]: ${ }^{6}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator",

[^18]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^19]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^20]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^21]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^22]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^23]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^24]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^25]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^26]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^27]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^28]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^29]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^30]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^31]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^32]: ${ }^{1}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

[^33]: ${ }^{2}$ Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ${ }^{3}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ${ }^{4}$ Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 5^{5} Braunstein, 1998, "Quantum error correction for communication with linear optics".

[^34]: ${ }^{6}$ Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator",

[^35]: ${ }^{7}$ Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

[^36]: ${ }^{8}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

[^37]: ${ }^{9}$ Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

