Group Coset Monogamy Games and an Application to Device-Independent QKD

Eric Culf Thomas Vidick Victor V. Albert

arXiv2212.03935

QCRYPT 2023

College Park, Maryland August 18th 2023

 Group Hilbert spaces L²(G) often naturally represent quantum spaces

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces L²(G) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces *L*²(*G*) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces *L*²(*G*) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1
 - Optical modes: $G = \mathbb{R}^n$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces *L*²(*G*) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1
 - Optical modes: $G = \mathbb{R}^n$

$$egin{array}{ccc} & H & & \end{pmatrix} = \sqrt{rac{1}{|H|}} \displaystyle{\sum_{h \in H}} & & | & h
angle \ & ext{Subgroup} \ H \subseteq G \swarrow$$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces *L*²(*G*) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1
 - Optical modes: $G = \mathbb{R}^n$

$$egin{array}{c} |gH
ightarrow
angle = \sqrt{rac{1}{|H|}} \sum_{h \in H} |gh
angle \ ext{Subgroup } H \subseteq G \end{array}$$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces *L*²(*G*) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1
 - Optical modes: $G = \mathbb{R}^n$

Irreducible representation
$$\gamma: H \to \mathcal{U}(d_{\gamma})$$

 $|gH^{\gamma}\rangle = \sqrt{\frac{1}{|H|}} \sum_{h \in H} \gamma$ (h) $|gh\rangle$
Subgroup $H \subseteq G$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces *L*²(*G*) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1
 - Optical modes: $G = \mathbb{R}^n$

Irreducible representation
$$\gamma: H \to \mathcal{U}(d_{\gamma})$$

 $|gH_{m,n}^{\gamma}\rangle = \sqrt{\frac{d_{\gamma}}{|H|}} \sum_{h \in H} \gamma_{m,n}(h) |gh\rangle$
Subgroup $H \subseteq G$
Matrix indices $1 \le m, n \le d_{\gamma}$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

- Group Hilbert spaces L²(G) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1
 - Optical modes: $G = \mathbb{R}^n$

Irreducible representation
$$\gamma : H \to \mathcal{U}(d_{\gamma})$$

 $|gH_{m,n}^{\gamma}\rangle = \sqrt{\frac{d_{\gamma}}{|H|}} \sum_{h \in H} \gamma_{m,n}(h) |gh\rangle$
Subgroup $H \subseteq G$
Matrix indices $1 \le m, n \le d_{\gamma}$

For each H, $|gH_{m,n}^{\gamma}\rangle$ forms orthonormal basis over $(gH, \gamma_{m,n}) \in G/H \times \hat{H}$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

²Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".

³Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

⁴Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

⁵Braunstein, 1998, "Quantum error correction for communication with linear optics".

Code	G	$H\cong$

²Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".

³Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

⁴Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

⁵Braunstein, 1998, "Quantum error correction for communication with linear optics".

Code	G	$H\cong$
CSS ²	\mathbb{Z}_2^n	\mathbb{Z}_2^k

²Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".

³Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

⁴Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

⁵Braunstein, 1998, "Quantum error correction for communication with linear optics".

Code	G	$H\cong$
CSS ²	\mathbb{Z}_2^n	\mathbb{Z}_2^k
GKP ³	\mathbb{R}	\mathbb{Z}

²Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".

³Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

⁴Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

⁵Braunstein, 1998, "Quantum error correction for communication with linear optics".

Code	G	$H \cong$
CSS ²	\mathbb{Z}_2^n	\mathbb{Z}_2^k
GKP ³	\mathbb{R}	\mathbb{Z}
Molecular⁴	SO_3	point group

²Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ³Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ⁴Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 ⁵Braunstein, 1998, "Quantum error correction for communication with linear optics".

Code	G	$H\cong$
CSS ²	\mathbb{Z}_2^n	\mathbb{Z}_2^k
GKP ³	$\mathbb R$	\mathbb{Z}
Molecular⁴	SO_3	point group
Analog CSS⁵	\mathbb{R}^{n}	\mathbb{R}^k

²Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ³Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ⁴Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 ⁵Braunstein, 1998, "Quantum error correction for communication with linear optics".

• Coset states $|gH_{m,n}^{\gamma}\rangle$ are well-defined only for finite groups

⁶Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

- Coset states $|gH_{m,n}^{\gamma}\rangle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
 - Compact: Peter-Weyl theorem
 - Abelian: Fourier transform

⁶Gottesman, Kitaev, and Preskill, 2001, "Encoding a gubit in an oscillator".

- Coset states $|gH_{m,n}^{\gamma}
 angle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
 - Compact: Peter-Weyl theorem
 - Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_H d_H h$

⁶Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".

- Coset states $|gH_{m,n}^{\gamma}
 angle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
 - Compact: Peter-Weyl theorem
 - Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_H d_H h$
- We need to replace Dirac deltas with Gaussians (damping)

⁶Gottesman, Kitaev, and Preskill, 2001, "Encoding a gubit in an oscillator".

- Coset states $|gH_{m,n}^{\gamma}
 angle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
 - Compact: Peter-Weyl theorem
 - Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_H d_H h$
- We need to replace Dirac deltas with Gaussians (damping)
- · Preserves states but harder to work with rigorously

⁶Gottesman, Kitaev, and Preskill, 2001, "Encoding a gubit in an oscillator".

• Alternate approach: Generalise only measurement

- Alternate approach: Generalise only measurement
- Measurement in basis of coset states becomes operator-valued measure

 $A^H: \mathscr{B}(G/H \times \hat{H}) \to \mathcal{B}(L^2(G))$ satisfying $\operatorname{Tr}(A^H(E)\rho) = \Pr[(gH, \gamma_{m,n}) \in E]$

- Alternate approach: Generalise only measurement
- · Measurement in basis of coset states becomes operator-valued measure

 $A^H: \mathscr{B}(G/H \times \hat{H}) \to \mathcal{B}(L^2(G))$ satisfying $\operatorname{Tr}(A^H(E)\rho) = \Pr[(gH, \gamma_{m,n}) \in E]$

• Intuitively $A^{H}(E) = \int_{E} |gH_{m,n}^{\gamma}\rangle \langle gH_{m,n}^{\gamma}| d(gH, \gamma_{m,n})$

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

Generalises game of Coladangelo, Liu, Liu, and Zhandry⁷

 Bob and Charlie prepare shared state

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

- Bob and Charlie prepare shared state
- Alice samples subgroup *H* from a finite set *S* and measures with *A^H*

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

- Bob and Charlie prepare shared state
- Alice samples subgroup *H* from a finite set *S* and measures with *A^H*
- 3 Alice sends *H* to Bob and Charlie.

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

- Bob and Charlie prepare shared state
- Alice samples subgroup *H* from a finite set *S* and measures with *A^H*
- 3 Alice sends *H* to Bob and Charlie.
- 4 Bob guesses gH, Charlie guesses $\gamma_{m,n}$

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

- Bob and Charlie prepare shared state
- Alice samples subgroup *H* from a finite set *S* and measures with *A^H*
- 3 Alice sends *H* to Bob and Charlie.
- **4** Bob guesses gH, Charlie guesses $\gamma_{m,n}$
- **6** Bob and Charlie win if guesses are up to allowed errors *E*, *F*

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

- Bob and Charlie prepare shared
- 2 Alice samples subgroup H from a finite set S and measures with A^H
- Alice sends H to Bob and Charlie.
- 4 Bob quesses gH, Charlie guesses $\gamma_{m,n}$
- 6 Bob and Charlie win if guesses are up to allowed errors E, F

Alice

The same bound on the winning probability holds!

Monogamy properties can be used to construct one-sided device-independent QKD⁸

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group G = Rⁿ, subgroups are subspaces
 P = span{e_{i1},..., e_{in/2}}

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G = \mathbb{R}^n$, subgroups are subspaces $P = \operatorname{span}\{e_{i_1}, \dots, e_{i_n/2}\}$
- We can identify $\mathbb{R}^n/P \cong P^{\perp}, \hat{P} \cong P$

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G = \mathbb{R}^n$, subgroups are subspaces $P = \operatorname{span}\{e_{i_1}, \dots, e_{i_{n/2}}\}$
- We can identify $\mathbb{R}^n/P \cong P^{\perp}$, $\hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates $|q + P^{\gamma_p}\rangle = \int_P e^{2\pi i p \cdot x} |x + q\rangle dx.$

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G = \mathbb{R}^n$, subgroups are subspaces $P = \operatorname{span}\{e_{i_1}, \dots, e_{i_{n/2}}\}$
- We can identify $\mathbb{R}^n/P \cong P^{\perp}$, $\hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates $|q + P^{\gamma_p}\rangle = \int_P e^{2\pi i p \cdot x} |x + q\rangle dx.$
- Measurement is homodyne detection

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G = \mathbb{R}^n$, subgroups are subspaces $P = \operatorname{span}\{e_{i_1}, \dots, e_{i_{n/2}}\}$
- We can identify $\mathbb{R}^n/P \cong P^{\perp}$, $\hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates $|q + P^{\gamma_p}\rangle = \int_P e^{2\pi i p \cdot x} |x + q\rangle dx.$
- Measurement is homodyne detection
- Damped coset states are squeezed states

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

Is it possible to make the QKD protocol more practical?

- Is it possible to make the QKD protocol more practical?
- Can monogamy-of-entanglement be used to show DIQKD properties of coherent state protocols?

Group Coset Monogamy Games and an Application to Device-Independent QKD

Eric Culf Thomas Vidick Victor V. Albert

arXiv2212.03935

QCRYPT 2023

College Park, Maryland August 18th 2023

- Group Hilbert spaces L²(G) often naturally represent quantum spaces
 - Qubits: $G = \mathbb{Z}_2^n$
 - Rotational symmetries: $G = SO_3$ or U_1^1
 - Optical modes: $G = \mathbb{R}^n$

Irreducible representation
$$\gamma: H \to \mathcal{U}(d_{\gamma})$$

 $|gH_{m,n}^{\gamma}\rangle = \sqrt{\frac{d_{\gamma}}{|H|}} \sum_{h \in H} \gamma_{m,n}(h) |gh\rangle$
Subgroup $H \subseteq G$
Matrix indices $1 \leq m, n \leq d_{\gamma}$

For each H, $|gH_{m,n}^{\gamma}\rangle$ forms orthonormal basis over $(gH, \gamma_{m,n}) \in G/H \times \hat{H}$

¹Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".

Code	G	$H\cong$
CSS ²	\mathbb{Z}_2^n	\mathbb{Z}_2^k
GKP ³	$\mathbb R$	\mathbb{Z}
Molecular⁴	SO_3	point group
Analog CSS⁵	\mathbb{R}^{n}	\mathbb{R}^k

²Calderbank and Shor, 1996, "Good quantum error-correcting codes exist".
 ³Gottesman, Kitaev, and Preskill, 2001, "Encoding a qubit in an oscillator".
 ⁴Albert, Covey, and Preskill, 2020, "Robust Encoding of a Qubit in a Molecule".
 ⁵Braunstein, 1998, "Quantum error correction for communication with linear optics".

Group Coset Monogamy Game

- Coset states $|gH_{m,n}^{\gamma}
 angle$ are well-defined only for finite groups
- Definition can be modified for groups with 'nice' representation theory
 - Compact: Peter-Weyl theorem
 - Abelian: Fourier transform
- Sums $\sum_{h \in H}$ become Haar integrals $\int_H d_H h$
- We need to replace Dirac deltas with Gaussians (damping)
- · Preserves states but harder to work with rigorously

⁶Gottesman, Kitaev, and Preskill, 2001, "Encoding a gubit in an oscillator".

- Alternate approach: Generalise only measurement
- · Measurement in basis of coset states becomes operator-valued measure

 $A^H: \mathscr{B}(G/H \times \hat{H}) \to \mathcal{B}(L^2(G))$ satisfying $\operatorname{Tr}(A^H(E)\rho) = \Pr[(gH, \gamma_{m,n}) \in E]$

• Intuitively $A^{H}(E) = \int_{E} |gH_{m,n}^{\gamma}\rangle \langle gH_{m,n}^{\gamma}| d(gH, \gamma_{m,n})$

⁷Coladangelo, Liu, Liu, and Zhandry, 2021, "Hidden Cosets and Applications to Unclonable Cryptography".

- Bob and Charlie prepare shared
- 2 Alice samples subgroup H from a finite set S and measures with A^H
- Alice sends H to Bob and Charlie.
- 4 Bob quesses gH, Charlie guesses $\gamma_{m,n}$
- 6 Bob and Charlie win if guesses are up to allowed errors E, F

The same bound on the winning probability holds!

- Monogamy properties can be used to construct one-sided device-independent QKD⁸
- Using infinite-dimensional group spaces, we can work with continuous-variable states
- Putting these together should give continuous-variable one-sided DIQKD
- Group $G = \mathbb{R}^n$, subgroups are subspaces $P = \operatorname{span}\{e_{i_1}, \dots, e_{i_{n/2}}\}$
- We can identify $\mathbb{R}^n/P \cong P^{\perp}$, $\hat{P} \cong P$
- Intuitively, coset states are position/momentum eigenstates $|q + P^{\gamma_p}\rangle = \int_P e^{2\pi i p \cdot x} |x + q\rangle dx.$
- Measurement is homodyne detection
- Damped coset states are squeezed states

⁸Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".

- Is it possible to make the QKD protocol more practical?
- Can monogamy-of-entanglement be used to show DIQKD properties of coherent state protocols?

Abelian case:

$$\langle \phi | A^{H}(E) | \psi \rangle = \int_{E} \overline{(\mathcal{F}_{H} | \phi \circ g \rangle)(\gamma)} (\mathcal{F}_{H} | \psi \circ g \rangle)(\gamma) d_{G/H \times \hat{H}}(gH, \gamma),$$

where \mathcal{F}_H is the group Fourier transform $(\mathcal{F}_H | \psi \rangle)(\gamma) = \int_H \psi(h) \overline{\gamma(h)} dh$. Compact case:

$$\langle \phi | A^H(E) | \psi \rangle = \sum_{\gamma_{m,n}} d_{\gamma} \int_{E_{\gamma_{m,n}}} \langle \phi \circ [g], \gamma_{m,n} \rangle_H \langle \gamma_{m,n}, \psi \circ [g] \rangle_H d[g],$$

where [g] is a fixed representative of gH, $\langle \psi, \phi \rangle_H = \int_H \overline{\psi(h)} \phi(h) d_H h$, and d[g] is the induced Haar measure on the symmetric space of classes.

Overlap Lemma⁹

Let P^1, \ldots, P^N be positive operators and π_1, \ldots, π_N be mutually orthogonal permutations. Then,

$$\left\|\sum_{i} P^{i}\right\| \leq \sum_{i} \max_{j} \left\|\sqrt{P^{j}}\sqrt{P^{\pi_{i}(j)}}\right\|$$

Lemma

For
$$H, K \leq G, E \subseteq G, F \subseteq \hat{G}, q \in G, \gamma_{m,n} \in \hat{G}$$
. If G compact,
 $\left\|A^{H}(G/H \times \{\gamma_{m,n}\})A^{K}(EqK/K \times \hat{K})\right\| \leq \sup_{g \in G} \sqrt{d_{\gamma}\mu_{H}(H \cap gEK)}$

If G abelian,

$$\left\|A^{H}(G/H \times F\gamma_{m,n})A^{K}(EqK/K \times \hat{K})\right\| \leq \sup_{g \in G} \sqrt{\mu_{H}(H \cap gEK)\mu_{\hat{H}}(F)}$$

⁹Tomamichel, Fehr, Kaniewski, and Wehner, 2013, "A monogamy-of-entanglement game with applications to device-independent quantum cryptography".