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Coset States

• Group Hilbert spaces L2(G) often
naturally represent quantum spaces

• Qubits: G = Zn
2

• Rotational symmetries: G = SO3 or U1
1

• Optical modes: G = Rn
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Coset representative g ∈ GIrreducible representation γ : H → U(dγ)

Subgroup H ⊆ G

Matrix indices 1 ≤ m, n ≤ dγ

For each H, |gHγ
m,n⟩ forms orthonormal basis over (gH, γm,n) ∈ G/H × Ĥ

1Albert, Covey, and Preskill, 2020, “Robust Encoding of a Qubit in a Molecule”.
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Coset States and Codes

Various error-correcting codes have coset
states as code and error words

Code G H ∼=

CSS2 Zn
2 Zk

2

GKP3 R Z

Molecular4 SO3 point group

Analog CSS5 Rn Rk

2Calderbank and Shor, 1996, “Good quantum error-correcting codes exist”.
3Gottesman, Kitaev, and Preskill, 2001, “Encoding a qubit in an oscillator”.
4Albert, Covey, and Preskill, 2020, “Robust Encoding of a Qubit in a Molecule”.
5Braunstein, 1998, “Quantum error correction for communication with linear optics”.
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Coset States for Infinite Groups
• Coset states |gHγ

m,n⟩ are well-defined only for finite groups

• Definition can be modified for groups with ‘nice’ representation theory
• Compact: Peter-Weyl theorem
• Abelian: Fourier transform

• Sums
∑

h∈H become Haar integrals
∫

H dHh
• We need to replace Dirac deltas with Gaussians (damping)
• Preserves states but harder to work with rigorously

6

g
γm,n

H

6Gottesman, Kitaev, and Preskill, 2001, “Encoding a qubit in an oscillator”.
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Coset Operator Measure

• Alternate approach: Generalise only measurement

• Measurement in basis of coset states becomes operator-valued measure

AH : B(G/H × Ĥ) → B(L2(G)) satisfying Tr(AH(E)ρ) = Pr[(gH, γm,n) ∈ E]

• Intuitively AH(E) =
∫

E |gHγ
m,n⟩⟨gHγ

m,n| d(gH, γm,n)

g
γm,n

H
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Monogamy-of-Entanglement Games from Coset States

ρ

AH

Alice

(gH, γm,n)

BH

Bob

H

gBH

CH

Charlie

H

(γm,n)C

Generalises game of Coladangelo, Liu,
Liu, and Zhandry7

1 Bob and Charlie prepare shared
state

2 Alice samples subgroup H from a
finite set S and measures with AH

3 Alice sends H to Bob and Charlie.
4 Bob guesses gH, Charlie

guesses γm,n

5 Bob and Charlie win if guesses are
up to allowed errors E,F

Theorem

wG(S) ≤E
i

sup
H∈S,γ∈Irr(H),g∈G

√
dγµH(H ∩ Egπi(H))µĤ(F)

7Coladangelo, Liu, Liu, and Zhandry, 2021, “Hidden Cosets and Applications to Unclonable Cryptography”.
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Prepare-and-Measure Version

Alice

∆|gHγ
m,n⟩

Φ

Bob

Charlie

H

H

gBH

(γm,n)C

The same bound on the winning probability holds!
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Application: DIQKD

• Monogamy properties can be used to construct one-sided device-independent QKD8

• Using infinite-dimensional group spaces, we can work with continuous-variable states
• Putting these together should give continuous-variable one-sided DIQKD

• Group G = Rn, subgroups are subspaces
P = span{ei1 , . . . , ein/2}

• We can identify Rn/P ∼= P⊥, P̂ ∼= P
• Intuitively, coset states are

position/momentum eigenstates
|q + Pγp⟩ =

∫
P e2πip·x|x + q⟩dx.

• Measurement is homodyne detection
• Damped coset states are squeezed states

8Tomamichel, Fehr, Kaniewski, and Wehner, 2013, “A monogamy-of-entanglement game with applications to device-independent quantum cryptography”.
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Coset States

• Group Hilbert spaces L2(G) often
naturally represent quantum spaces

• Qubits: G = Zn
2

• Rotational symmetries: G = SO3 or U1
1

• Optical modes: G = Rn

|gHγ
m,n⟩ =

√
dγ
|H|

∑
h∈H

γm,n(h)|gh⟩
Coset representative g ∈ GIrreducible representation γ : H → U(dγ)

Subgroup H ⊆ G Matrix indices 1 ≤ m, n ≤ dγ

For each H, |gHγ
m,n⟩ forms orthonormal basis over (gH, γm,n) ∈ G/H × Ĥ

1Albert, Covey, and Preskill, 2020, “Robust Encoding of a Qubit in a Molecule”.
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Coset States and Codes

Various error-correcting codes have coset
states as code and error words

Code G H ∼=

CSS2 Zn
2 Zk

2

GKP3 R Z

Molecular4 SO3 point group

Analog CSS5 Rn Rk

2Calderbank and Shor, 1996, “Good quantum error-correcting codes exist”.
3Gottesman, Kitaev, and Preskill, 2001, “Encoding a qubit in an oscillator”.
4Albert, Covey, and Preskill, 2020, “Robust Encoding of a Qubit in a Molecule”.
5Braunstein, 1998, “Quantum error correction for communication with linear optics”.
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Coset States for Infinite Groups
• Coset states |gHγ

m,n⟩ are well-defined only for finite groups
• Definition can be modified for groups with ‘nice’ representation theory

• Compact: Peter-Weyl theorem
• Abelian: Fourier transform

• Sums
∑

h∈H become Haar integrals
∫

H dHh
• We need to replace Dirac deltas with Gaussians (damping)
• Preserves states but harder to work with rigorously

6

g
γm,n

H

6Gottesman, Kitaev, and Preskill, 2001, “Encoding a qubit in an oscillator”.
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Coset Operator Measure

• Alternate approach: Generalise only measurement
• Measurement in basis of coset states becomes operator-valued measure

AH : B(G/H × Ĥ) → B(L2(G)) satisfying Tr(AH(E)ρ) = Pr[(gH, γm,n) ∈ E]

• Intuitively AH(E) =
∫

E |gHγ
m,n⟩⟨gHγ

m,n| d(gH, γm,n)

g
γm,n

H
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Monogamy-of-Entanglement Games from Coset States

ρ AH
Alice (gH, γm,n)

BH
Bob

H

gBH

CH
Charlie

H

(γm,n)C

Generalises game of Coladangelo, Liu,
Liu, and Zhandry7

1 Bob and Charlie prepare shared
state

2 Alice samples subgroup H from a
finite set S and measures with AH

3 Alice sends H to Bob and Charlie.
4 Bob guesses gH, Charlie

guesses γm,n

5 Bob and Charlie win if guesses are
up to allowed errors E,F

Theorem

wG(S) ≤E
i

sup
H∈S,γ∈Irr(H),g∈G

√
dγµH(H ∩ Egπi(H))µĤ(F)

7Coladangelo, Liu, Liu, and Zhandry, 2021, “Hidden Cosets and Applications to Unclonable Cryptography”.
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Prepare-and-Measure Version

Alice
∆|gHγ

m,n⟩
Φ

Bob

Charlie

H

H

gBH

(γm,n)C

The same bound on the winning probability holds!
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Application: DIQKD
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Coset Operator Measure Definition

Abelian case:

⟨ϕ|AH(E)|ψ⟩ =
∫

E
(FH|ϕ ◦ g⟩)(γ)(FH|ψ ◦ g⟩)(γ)d

G/H×Ĥ
(gH, γ),

where FH is the group Fourier transform (FH|ψ⟩)(γ) =
∫

H ψ(h)γ(h)dh.
Compact case:

⟨ϕ|AH(E)|ψ⟩ =
∑
γm,n

dγ

∫
Eγm,n

⟨ϕ ◦ [g], γm,n⟩H⟨γm,n, ψ ◦ [g]⟩Hd[g],

where [g] is a fixed representative of gH, ⟨ψ, ϕ⟩H =
∫

H ψ(h)ϕ(h)dHh, and d[g] is the induced
Haar measure on the symmetric space of classes.
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Winning Probability Bound: Proof Technique

Overlap Lemma9

Let P1, . . . ,PN be positive operators and π1, . . . , πN be mutually
orthogonal permutations. Then,∥∥∥∑

i

Pi
∥∥∥ ≤

∑
i

max
j

∥∥∥√Pj
√

Pπi(j)
∥∥∥

Lemma
For H,K ≤ G, E ⊆ G, F ⊆ Ĝ, q ∈ G, γm,n ∈ Ĝ. If G compact,∥∥AH(G/H × {γm,n})AK(EqK/K × K̂)

∥∥ ≤ sup
g∈G

√
dγµH(H ∩ gEK)

If G abelian,∥∥AH(G/H × Fγm,n)AK(EqK/K × K̂)
∥∥ ≤ sup

g∈G

√
µH(H ∩ gEK)µĤ(F)

9Tomamichel, Fehr, Kaniewski, and Wehner, 2013, “A monogamy-of-entanglement game with applications to device-independent quantum cryptography”.
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