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Non-Malleable Codes (NMCs) [DPW10]

NMCs encode a message M in a manner such that tampering
the codeword results in the decoder either outputting the original
message M or a message that is unrelated/independent of M .

M → Enc(M) → f(Enc(M)) → Dec(f(Enc(M))) = M ′.

∀M , we need M ′ ≈ϵ pfM + (1 − pf )Df , where pf ,Df depend
only on f (chosen by adversary from family f ∈ F).

NMCs can be thought of as a relaxation of error detecting codes.
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Split-state model

M M ′Enc

X X ′

Y
Y ′

f

g

A = (f, g)

Dec

Figure: Split-state model.

Rate of the NMC : |M |
|X|+|Y | .
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Non-Malleable Randomness Encoder (NMRE) [KOS18]

“NMRE” can be thought of as a further relaxation of
non-malleable codes in the following sense:

▶ NMREs output a random message along with its corresponding
non-malleable encoding.
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NMRE in the split-state model

R M ′Enc

M

M

X X ′

Y
Y ′

f

g

A = (f, g)

Dec

Figure: NMRE in the split-state model.

Rate of the NMRE : |M |
|X|+|Y | .
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Quantum split-state adversary model [ABJ22]

M M ′Enc

X X ′

Y
Y ′

U

V

A = (U, V, |ψ⟩)

W1 W ′1

W2 W ′2

Dec

Figure: Quantum split-state adversary model.
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Quantum secure NMRE

R M ′

M

M

Enc

X X ′

Y
Y ′

U

V

A = (U, V, |ψ⟩)

W1 W ′1

W2 W ′2

Dec

Figure: Quantum secure NMRE.

NMRE security : MM ′ ≈ε pAMM + (1 − pA)M ⊗M ′A.
Analogously, one can consider quantum secure NMC.
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Prior work - NMCs in the split-state model

Work by Rate Splits Messages Adversary

CZ19 Ω (1) 10 classical classical
KOS18 1/3 3 classical classical

CGL15 Ω
(

1
poly(n)

)
2 classical classical

Li17 Ω
(

1
log n

)
2 classical classical

Li19 Ω
(

log log n
log n

)
2 classical classical

AO20 Ω(1) 2 classical classical
Li23 Ω(1) 2 classical classical

AKOOS22 1/3 2 classical classical
ABJ22 Ω

(
1

poly(n)

)
2 classical quantum
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Prior work - NMRE in the split-state model

Work by Rate Messages Adversary Splits

KOS18 1/2 classical classical 2

It is not known to be quantum secure to the best of our
knowledge.
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Applications - NMCs and NMREs

In construction of non-malleable secret sharing [GK18a, GK18b,
ADN+19].

In construction of non-malleable commitment schemes [GPR16].

In secure message transmission and non-malleable
signatures [SV19].
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Our results

We provide a construction of rate 1/2, 2-split NMRE which is
arguably simpler than the construction in [KOS18] and is
quantum secure.

Theorem

There exists a rate 1/2, 2-split quantum secure NMRE.

Naresh



Talk
Results and few technical details 15/35

Prior work - NMRE [KOS18].

W
MAC

S
K

M

M

M ′Ext

NMC

W ′

Y ′

X
Y

X ′
K ′

S′

f

g
NMD

Verify
If check passes,
W else ⊥

A = (f, g)

DecEnc

Ext M ′

Figure: Rate 1/2, 2-split NMRE (slightly modified) [KOS18].

The above construction uses 3 crypto primitives.
1 MAC - Message authentication code
2 Ext - Seeded extractor
3 NMC - Poor rate non-malleable code
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Our quantum secure NMRE

Y

X

M

M

M ′2nmExt |ψ⟩E1E2

σ ρ̂ ρ

Y Y ′

X
X ′

V

U

A = (U, V, ψ)

E2 E′2

E1 E′1

DecEnc

2nmExt M ′

X̂ ′

Ŷ ′

Figure: Rate 1/2, 2-split quantum secure NMRE.
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Our results

We observe that an NMRE can be constructed using a 2-source
non-malleable extractor, 2nmExt.

Quantum secure 2nmExt construction from earlier work
of [BJK21] already gives a rate 1/8, quantum secure NMRE.

We modify and optimize parameters of 2nmExt construction
from [BJK21] to get a rate 1/2, quantum secure NMRE.
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Definition: Quantum NMCs.

M̂ M̂

M MEnc

ησ

E1 E1

E2
E2

U

V

|ψ⟩W1W2

A = (U, V, |ψ⟩)

W1 W1

W2 W2

Dec

NMC security: ∀σM , we need
ηMM̂ ≈ pAσMM̂ + (1 − pA)γAM ⊗ σM̂ .
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Quantum NMC with shared key [AM17]

M̂
M̂

M CR C†R
M

R

σ ρ τ η

Z Z

|0⟩E
E

U

A

Figure: Quantum NMC with shared key.

Here, {Cr}r←R denotes a family of 2-design unitaries.
Quantum NMC definition from [AM17] is based on mutual
information.
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3-split quantum NMC

Theorem

There exists a rate 1/11, 3-split quantum NMC.

M

M̂

Y

E3
E′3

X

R

CR
Z Z ′

R′

M ′
M̂

2nmExt

W

|ψ⟩E1E2E3

σ ρ̂ ρ

Y Y ′

X
X ′

V

U

A = (U, V,W,ψ)

E2 E′2

E1 E′1

DecEnc

2nmExt

C†R′

X̂ ′

Ŷ ′

Figure: Rate 1/11, 3-split quantum NMC.
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3-split quantum NMC - High level overview

Use 2-splits to protect the key R.

Use the 3rd split to protect the message using 2-design unitaries.

1 R = R′, security follows from 2-design unitary properties (Pauli
mixing and decoupling property).

2 RR′ = UR ⊗R′, security follows from the decoupling property of
2-design unitaries.

Naresh
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3-split quantum secure NMC

A similar construction replacing 2-design unitaries by pair-wise
independent permutations.

Rate difference comes from difference in sizes of 2-design
unitaries and pair-wise independent permutations.

Theorem

There exists a rate 1/5, 3-split quantum secure NMC.
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From 3-split to 2-split quantum NMC

We combine 2-splits as shown below.

M CR C†R′

M̂ M̂

M

Y

X
R

Enc

2nmExt

Dec

|ψ⟩W1W2

σ σ1 σ2 σ3

Z Z

Y Y ′

R′

X
X ′

V

U

A = (U, V, ψ)

W2 W2

W1 W1

2nmExt
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From 3-split to 2-split quantum NMC
Problem: register Z carries information on register R. This
implies NMRE security no longer holds.

M CR C†R′

M̂ M̂

M

Y

X
R

Enc

2nmExt

Dec

|ψ⟩W1W2

σ σ1 σ2 σ3

Z Z

Y Y ′

R′

X
X ′

V

U

A = (U, V, ψ)

W2 W2

W1 W1

2nmExt

Register Z carries no information on R if the input message σM

is uniform.
Additionally need - augmented property of 2nmExt.
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2-split quantum NMC and quantum secure NMC

Theorem

There exists a rate 1/11, 2-split quantum NMC for uniform input
message.

Quantum NMC for uniform input message can be thought of as
protecting half of maximally entangled state against split-state
tamperings.

Replacing 2-design unitaries by pairwise independent
permutations, we get rate 1/5, 2-split quantum secure NMC for
uniform input message.
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Threshold non-malleable secret sharing (NMSS) [GK18a]

Let M be a classical message and (Share,Rec) be a t-out-of-p
secret sharing scheme.
Let Share(M) = (S1, . . . , Sp).
Let adversary Adv tamper (S1, . . . , Sp) → (S′1, . . . , S′p).
Let T = {1, 2, . . . , t} be an authorized set to reconstruct the
message and M ′ = Rec(S′1, . . . , S′t).
Non-malleable security:
MM ′ ≈ pAdvMM + (1 − pAdv)M ⊗M ′Adv.
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From 2-split NMC to threshold NMSS [GK18a]

Construction from [GK18a] needs the following:

a 2-split NMC (2nmShare, 2nmRec).

additionally:
▶ a t-out-of-p secret sharing scheme (Share,Rec).
▶ a 2-out-of-p leakage resilient secret sharing scheme

(lrShare, lrRec).
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From 2-split NMC to threshold NMSS [GK18a]

Candidate threshold NMSS scheme from [GK18a]:

1 Compute the split-state encoding (L,R) = 2nmShare(M);
2 Apply Share to L to obtain p shares stored in L1, . . . , Lp;
3 Apply lrShare to R to obtain p shares stored in registers
R1, . . . , Rp;

4 Form the i-th final share Si = (Li, Ri).
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Reduction from threshold NMSS to 2-split NMC [GK18a]

Tampering of R → R′ must be performed independent of L.
▶ R′ depends on R′

1R
′
2 which further depend on L1L2. But note

L1L2 information theoretically hides L.

Tampering of L → L′ must be performed independent of R.
▶ L′ depends on L′

1L
′
2 . . . L

′
t which further depend on R1R2 . . . Rt.

Considering, L′
i as a leakage on Ri, lrShare property implies now

L′ is independent of R.

Overall, they identify random variables LL′ERR′ such that
▶ L⊗ E ⊗R
▶ L′L ↔ E ↔ RR′

Naresh
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Analogous reduction for quantum messages

Tampering R → R′ is independent of L.
▶ Analogous to the classical setting.

Tampering L → L′ is independent of R.
▶ Realizing this argument in the quantum setting requires

"augmented" leakage-resilient secret sharing scheme.
We cannot identify registers LL′ERR′ such that

▶ L⊗ E ⊗R
▶ L′L ↔ E ↔ RR′

Theorem

Using 2-split quantum NMC, quantum secret sharing scheme and
augmented leakage resilient secret sharing scheme (instead of
classical schemes) in the GK18a threshold NMSS scheme gives us the
threshold quantum NMSS scheme.
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Difficulty in the quantum setting

{X ⊗ E ⊗ Y } and adversary modifies (E,X) → (E,X,X ′) and
(E, Y ) → (E, Y, Y ′).

1 When adversary is classical, we have XX ′ ↔ E ↔ Y Y ′.
2 When adversary is quantum, above Markov chain may not be true.
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Conclusion and open questions
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Improved NMCs

Constant rate 2-split NMCs
- Can we design (worst-case) split-state NMCs for quantum messages
with a constant rate? This is open even for classical messages against
quantum adversaries with shared entanglement. More ambitiously,
can we construct (worst-case) split-state NMSS schemes for quantum
messages with a constant rate?
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NMSS schemes against joint tamperings
- Can we design NMSS schemes for quantum messages that are
secure against joint tampering of shares?

Computationally-bounded adversaries
- What can we achieve if we consider computationally-bounded
adversaries instead?
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Final slide

That’s all from my end! Any questions ?
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