Pseudorandom Quantum States with Proof of Destruction and applications

Amit Behera, Zvika Brakerski, Or Sattath, Omri Shmueli

BGU

Weizmann Institute

BGU

Tel Aviv University

Qcrypt 2023

https://eprint.iacr.org/2023/543.pdf

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 756482)

Pseudorandom quantum states Ji-Liu-Song'18

Recall: Pseudorandom States definition

A quantum poly-time (QPT) algorithm G is a pseudorandom state (PRS) generator if

- given key $k \in \{0,1\}^{\lambda}$, G(k) outputs *n*-qubit state $|\psi_k\rangle$
- for all t, for all poly-time algorithms D (called a **distinguisher**),

$$|\psi_k\rangle = G(k) \text{ for } D(|\psi_k\rangle^{\otimes t}) \approx D(|\vartheta\rangle^{\otimes t}) |\vartheta\rangle \text{ is Haar-random}$$

random $k \in \{0,1\}^{\lambda}$

Recall: Pseudorandom States definition

A quantum poly-time (QPT) algorithm G is a pseudorandom state (PRS) generator if

- given key $k \in \{0,1\}^{\lambda}$, G(k) outputs *n*-qubit state $|\psi_k\rangle$
- for all t, for all poly-time algorithms D (called a **distinguisher**),

 $|\psi_k\rangle = G(k) \text{ for } D(|\psi_k\rangle^{\otimes t}) \approx D(|\vartheta\rangle^{\otimes t}) |\vartheta\rangle \text{ is Haar-random}$ A PRS generator is different from a state *t*-design, where indistinguishability only holds for some *fixed t*.

Pseudorandom *function-like* states

A quantum poly-time algorithm G is a **PRFS generator** if

- given key $k \in \{0,1\}^{\lambda}$ and input $x \in \{0,1\}^d$, G(k, x) outputs *n*-qubit state $|\psi_{k,x}\rangle$
- for all t, for all distinct inputs x_1, \ldots, x_s , for all poly-time distinguishers D

$$D(|\psi_1\rangle^{\otimes t}, \dots, |\psi_s\rangle^{\otimes t}) \approx D(|\vartheta_1\rangle^{\otimes t}, \dots, |\vartheta_s\rangle^{\otimes t})$$

 $|\psi_i\rangle$'s sampled by:

- sampling random $k \in \{0,1\}^{\lambda}$
- setting $|\psi_i\rangle = G(k, x_i)$ for i = 1, ..., s

 $|\vartheta_i\rangle$'s sampled by:

- Independently sampling
 - Haar-random $|\vartheta_i\rangle$ for i = 1, ..., s

Important: the distinguisher D is allowed to depend on x_1, \ldots, x_s !

Quantum States with Proof of destruction

Motivation

Known constructions and comparison to this work

Reference	Based on	Pseudorandomness	Proof of destruction
BS'16, Wie'69, MVW'13, PYJ+'12 CLLZ'21, Shm'22	BB84/Subspace/Coset states	×	\checkmark

Known constructions and comparison to this work

Reference	Based on	Pseudorandomness	Proof of destruction
BS'16, Wie'69, MVW'13, PYJ+'12 CLLZ'21, Shm'22	BB84/Subspace/Coset states	×	\checkmark
JLS'21, BS'20	Random phase state		×

Known constructions and comparison to this work

Reference	Based on	Pseudorandomness	Proof of destruction
BS'16, Wie'69, MVW'13, PYJ+'12 CLLZ'21, Shm'22	BB84/Subspace/Coset states	×	
JLS'21, BS'20	Random phase state		×
This work	Random phase state on a hidden set	~	~

Definitions

Pseudorandom States with proof of destruction (PRSPD)

Keyspace $\{0,1\}^{\lambda}$ associated with a triplet of efficient algorithms

- $|\psi_k\rangle \leftarrow Gen(k)$
- $p \leftarrow Destruct(|\psi_k\rangle)$
- \checkmark \leftarrow $Ver_k(p)$

Correctness:
$$\Pr[k \leftarrow \{0,1\}^{\lambda}, |\psi_k\rangle \leftarrow Gen(k), p \leftarrow Destruct(|\psi_k\rangle) : 1 \leftarrow Ver_k(p)] = 1.$$

Security

- Pseudorandomness
 - Same as the Pseudorandom States
- Unforgeability of proof of destruction

Unforgeability game

Construction

Construction

Recall Ji-Liu-Song'19 (Simplified by Brakerski-Shmueli'20)

- Pseudorandom function family (PRF): $\{f_k\}_{k \in K}$
- Same keyspace K.

Sparsifying the construction

Sparsifying the construction

- PRF: $\{f_k\}_{k \in K}$
- Pseudorandom Permutation (PRP): $\{P_r\}_{r \in R}$
- Keyspace $K \times R$

$$\frac{\text{PRSPD with support on a hidden set}}{|\psi_{k,r}\rangle} = \frac{1}{\frac{n}{2^{\frac{n}{4}}}} \sum_{\substack{x \in S_r}} (-1)^{f_k(x)} |x\rangle$$

 $S_r = \{P_r(z) | z \in 0^{n/2} \times \{0,1\}^{\frac{n}{2}}\}$ $r \leftarrow Uniform(R)$ $S_r : Pseudorandom set of size <math>2^{n/2}$ Random Random phase state Set of size $2^{n/2}$ Destruct: computational basis measurement • $Ver_{k,r}()$: Membership in S_r ۲

Technical lemma for security proofs $\vec{x} = x_1, x_2, \dots x_t \leftarrow \{0, 1\}^n$ $k \leftarrow \{0,1\}^{\lambda}$ $|Sym_{\vec{x}}\rangle \propto \sum_{\pi} |x_{\pi(1)}, x_{\pi(2)}, \dots x_{\pi(t)}\rangle$ $|\psi_k\rangle \leftarrow Gen(k)$ $1_{\{x_1, x_2, \dots, x_t\}}(\cdot)$ $Ver_k(\cdot)$ \approx

 $Sym_{\vec{\mathbf{y}}}$

 $|\psi_{k}\rangle^{\otimes t}$

Pseudorandom Function-like States with Proof of Destruction (PRFSPD)

Applications

Applications of PRS, PRFS

(Ananth-Qian-Yuen'21, Morimae-Yamakawa'21, etc)

Why do we care?

Why do we care?

Full picture currently

Welcome to the Jungle!

https://sattath.github.io/qcrypto-graph/

Simplify?

Open-problem

Separation A Most classical minicrypt primitives do not need one-way functions or quantum communication.

Related question: Separation of short-output PRS from OWF?

Template for the applications

Template for dequantazing PRS/PRFS applications

Quantum communication

 $MAC.Verify_k(m)$ $|\psi\rangle \leftarrow PRFS.Gen(k,m)$

 $\checkmark \leftarrow SWAP(|\psi\rangle, |\psi_{k,m}\rangle)$

MAC.Sign(k,m) $|\psi_{k,m}\rangle \leftarrow PRFS.Gen(k,m)$

Template for dequantazing PRS/PRFS applications

Classical • Quantum communication

k k

Proof of destruction of the PRS/PRFS state *m*, *p*

 $MAC.Verify_k(p,m)$ $\checkmark \leftarrow PRFS.Verify_k(p,m)$

Works in most but not in all cases!

MAC.Sign(k,m) $|\psi_{k,m}\rangle \leftarrow PRFS.Gen(k,m)$ $p \leftarrow PRFS.Destruct (k,m)$

k

Thank you!

Challenges in this template

One-way functions One-time signatures (Lam79)

Public key of the signature are OWF images (like y)

Challenges in this template

Public key of the signature are PRS states (like $|\psi_k\rangle$)

Challenges in this template

One-time signatures (Morimae-Yamakawa'22)

Solution: Change the verification algorithm to rule out dummy keys!

PRSPD

•

Thank you!

Example of an application: MAC construction

Hurdles in finding a separation

Other studied variants of Pseudorandom states

- PRFS (potentially stronger than PRS)
- Short Output PRS (potentially stronger)
- EFI (potentially weaker)
- One-way states (potentially weaker)