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OT: state of the art

Oblivious Transfer (OT) : studied a lot ([Rab81], [EGL85], [PVW08], [BD18], [GLSV22], [BCKM21]. . . )

State of the art

Classical Quantum

Requires trapdoors
(= CryptoMania, asymmetric crypto)

No structure is necessary
(= hash function)

2 messages 7 messages ([CK88]/[BBCS92]. . . )

→ 3 messages ([ABKK23])

With pre-shared EPR pairs:
[BKS23]: 1-message random receiver bit string OT & 2-message OT

[Agarwal, Bartusek, Khurana, Kumar 23] raises the question:

? Is there an OT protocol in 2-messages (optimal) without structure?
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Our contributions

Yes !

Theorem 1 (informal)

There exists a 2-message (optimal) quantum OT protocol secure in the Random Oracle Model
(i.e. no structure) assuming the existence of a hiding collision-resistant hash function.

Our approach

No structure is necessary
(= hash function)

2 messages

Methods
Remove cut-and-choose: classical Zero-Knowledge
proofs + quantum protocol
= prove a statement on a quantum state non-
destructively.
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Our contributions

We can prove that a received quantum state belongs to a fixed set of quantum state:

Theorem 2 (informal)

For any arbitrary predicate P , there exists a protocol such that:
• The prover chooses a secret subset S of qubits such that P(S) = ⊤
• At the end of the protocol, the verifier ends up with a quantum state such that qubits in
S are collapsed (measured in computational basis), even if the prover is malicious

• S stays unknown to the verifier

(P allows us to get string-OT, k-out-of-n OT. . . )

Complexity theory:
⇒ generalize ZK proofs to quantum languages (ZKstatesQMA)

(we do not characterize ZKstatesQMA/ZKstatesQIP completely, but we define them and show they are not trivial)
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New contributions

Theorem 3 (ZK⇒ quantum OT, informal)

Assuming the existence of a collision-resistant hidding function, there exists a protocol turning any
n-message, post-quantum Zero-Knowledge (ZK) proof of knowledge into an (n + 1)-message quantum
OT protocol assuming a Common Random String model or n+ 2 without further setup assumptions.

The security properties (statistical security, etc.) and assumptions (setup, computational assumptions,
etc.) of the ZK protocol are mostly preserved.

Article Classical Setup Messages MiniQCrypt Composable Statistical
This work + [Unr15] No RO 2 Yes Yes No
This work + [HSS11] No Plain M. > 2 No (LWE) Yes No
This work + S-NIZK No Like ZK 2 Like ZK Yes Sender

This work + NIZK proof No Like ZK 2 Like ZK Yes Receiver
This work + ZK No Like ZK ZK + 1 or 2 Like ZK Yes Like ZK
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Construction

This is not secure!

Problem of naive construction

Problem: Alice can cheat by sending two |+⟩ states instead of one |0/1⟩
and one |±⟩.
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? How can Alice prove that one qubit is in the
computational basis and the other is in the

Hadamard basis?

⇒ Known to be possible using LWE (Colisson, Grosshans, Kashefi (2022))
Problem: need structure + not suitable for statistical security.

What about a weaker statement?
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Alice(b ∈ {0,1}) Bob((m0,m1) ∈ {0,1}2)

∀d ∈ {0,1},w(b)
d

$← {0} × {0,1}n

l $← {0,1}

w(1−b)
l

$← {0} × {0,1}n

w(1−b)
1−l

$← {1} × {0,1}n

∀(c,d) ∈ {0,1}2,h(c)
d := h(d∥w(c)

d )

π := (NI)ZK proof that:

If the ZK proof is interactive,
then we actually run the ZK
protocol (before sending the
quantum state) instead of
sending the proof (of course
this adds additional rounds
of communication).∃(w(c)

d )c,d,∀c,d,h(c)
d = h(d∥w(c)

d ))

and ∃c,d s.t. w(c)
d [1] = 1.

r(b) $← {0,1}

|ψ(b)⟩ := |0⟩ |w(b)
0 ⟩+ (−1)r(b) |1⟩ |w(b)

1 ⟩

|ψ(1−b)⟩ := |l⟩ |w(1−b)
l ⟩

∀(c,d) : h(c)
d , π, |ψ(0)⟩ , |ψ(1)⟩

Check (or run if interactive proof) π.
∀c, apply on |ψ(c)⟩ |0⟩ the unitary:
x,w 7→ w[1] ̸= 1 ∧ ∃d,h(x∥w) = h(c)

d ,

measure the last (output) register
and check that the outcome is 1.
∀c,measure the second register of |ψ(c)⟩

At that step, |ψ(b)⟩ = |0⟩ ± |1⟩
and |ψ(1−b)⟩ = |l⟩, but Bob
does not know b (NIZKoQS). in the Hadamard basis (with outcome s(c)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End of NIZKoQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∀c,apply Zmc on |ψ(c)⟩ and measure it
in the Hadamard basis (with outcome z(c)).∀c, s(c), z(c)

Compute α := r(b) ⊕
⊕
i
s(b)[i](w(b)

0 ⊕w(b)
1 )[i]

return α⊕ z(b) // Should be mb OT from ZK | 8
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Security Proof
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Security

Composable security (informal)

The protocol quantum-standalone realizes the OT functionality, assuming that:
• h is collision resistant (security against malicious Alice),
• h is hiding1 (i.e. no information leaks on x given h(x∥r), security against malicious

Bob).
• There exists a ZK proof of knowledge

Moreover, it is secure against statistically unbounded parties if the ZK protocol is se-
cure in that setting and if the corresponding assumptions statistically hold (e.g. injective
h for unbounded Alice, lossy h for unbounded Bob).

1 Note that we can get an even weaker assumption (h is one-way) by using hardcore bits and
the Goldreich-Levin construction, but we leave the formalization of this proof for future work.
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Quantum language
and ZK on quantum state
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Quantum language and ZKoQS

Quantum language = generalization of classical languages.

Properties of ZK on Quantum States (informal):
• Soundness: LQ = subset of quantum states (bipartite for

the adversary).
• Classically x ∈ L if V accepts
• Quantumly ρ ∈ LQ if V accepts

• Correctness:
• Classically: x ∈ Lw ⊂ L, w ∈ {0,1}∗ is the witness
• Quantumly: ρ ∈ Lω,ωs ⊆ Lω ⊆ LQ, ω ∈ {0,1}∗ is the

witness or class, and ωs ∈ {0,1}∗ is the subclass
• Zero-Knowledge:

• Classically: Bob can’t learn info on w
• Quantumly: Bob can’t learn info on ω

⇒ We introduce complexity classes ZKstatesQMA/ZKstatesQIP

ω

Secret: think “basis”

P V

ωs
Remaining classical description:
think “encoded value”

ρ/⊥

L0 L1

LQ (at least one qubit in |0⟩ or |1⟩)

|+0⟩
|+1⟩

L0,0

|−0⟩
|−1⟩

L0,1

|0+⟩
|1+⟩

L1,0

|0−⟩
|1−⟩

L1,1

Remaining states (malicious behavior)
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Conclusion

Take-home message

(and Zero-Knowledge proofs on quantum states)
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Open questions and ongoing works

Open questions and ongoing works

• Characterize ZKstatesQMA
What are the other ZKoQS properties that can(not) be verified?
Under which assumption?
• Role of entanglement

Prove (im)possibility of similar ZKoQS with only single-qubit
operations? (entanglement seems important)
• Other applications?

Quantum money, reducing communication complexity in other
protocol. . .
• . . .
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Comparison with existing works

Article Classical Setup Messages MiniQCrypt Composable Statistical
[PVW08] Yes CRS 2 No (LWE) Yes Either
[BD18] Yes Plain M. 2 No (LWE) Sender Receiver

[CK88] + later works No Depends 7 Yes Yes [DFL+09],[Unr10] Either
[GLSV21] No Plain M./

CRS
poly/

cte ≥ 7
Yes Yes No

[BCKM21] No Plain M./
CRS

poly/
cte ≥ 7

Yes Yes Sender

[ABKK23] No RO 3 Yes Yes No
This work + [Unr15] No RO 2 Yes Yes No
This work + [HSS11] No Plain M. > 2 No (LWE) Yes No
This work + S-NIZK No Like ZK 2 Like ZK Yes Sender

This work + NIZK proof No Like ZK 2 Like ZK Yes Receiver
This work + ZK No Like ZK ZK +1 or 21 Like ZK Yes Like ZK
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