

Satellite-based quantum key distribution in the presence of bypass channels

QCrypt 2023

Masoud Ghalaii^{1,2}, Sima Bahrani³, Carlo Liorni⁴, Federico Grasselli⁴, Hermann Kampermann⁴, <u>Lewis Wooltorton</u>^{2,3}, Rupesh Kumar², Stefano Pirandola², Timothy Spiller², Alexander Ling⁵, Bruno Huttner⁶, Mohsen Razavi¹ August 2023

¹University of Leeds, UK, ²University of York, UK, ³University of Bristol, UK, ⁴University of Düsseldorf, Germany, ⁵National University of Singapore, ⁶ID Quantique, Switzerland

arXiv:2212.04807

Background and motivation

Satellite based QKD

As a solution to achieve very long distance QKD, and overcome fundamental bounds without repeaters, significant effort has been devoted to satellite QKD:

[Nature 549, 43 (2017)]

[PRL 120, 030501 (2018)]

But significant challenges remain:

Getting the most out of Sat-QKD

But significant challenges remain:

- Very expensive
- Limited availability (For LEO satellites roughly 5mins to exchange keys)
- Only night operation
- Highly weather dependent
- Requirement of large ground station telescopes (order of 1m diameter)

Getting the most out of Sat-QKD

But significant challenges remain:

- Very expensive
- Limited availability (For LEO satellites roughly 5mins to exchange keys)
- Only night operation
- Highly weather dependent
- Requirement of large ground station telescopes (order of 1m diameter)

What can we do?

With such challenges, how can we hope to do any better in space? Lets consider relevant eavesdropping models...

Shared Alice and Bob hold the same key

Shared Alice and Bob hold the same key

Private randomness The key is unpredictable to any third party/eavesdropper

Goal:

Given some basic and necessary assumptions on Eve, and experimental observations, prove the above properties

Goal:

Given some basic and necessary assumptions on Eve, and experimental observations, prove the above properties

Let us examine the different eavesdropping assumptions and restrictions commonly encountered in QKD...

Common eavesdropping assumptions in QKD

Fundamental physics governing an all powerful Eve

Eve's control over the devices

Common eavesdropping assumptions in QKD

Fundamental physics governing an all powerful Eve

Underlying assumption: Eve still has access to the entire channel, and unlimited computational resources. Is this always realistic?

Additional eavesdropping restrictions in QKD

Current literature has explored making QKD more practical by imposing well justified *restrictions* on Eve:

(and others...)

Additional eavesdropping restrictions in QKD

Current literature has explored making QKD more practical by imposing well justified *restrictions* on Eve:

Additional eavesdropping restrictions in QKD

Current literature has explored making QKD more practical by imposing well justified *restrictions* on Eve:

Depart from an all powerful Eve

Satellite QKD with restricted eavesdropping: this work

Unrestricted eavesdropping: Eve has complete access to the channel

Unrestricted eavesdropping:

Eve has complete access to the channel

Unrestricted eavesdropping:

Eve has complete access to the channel

Implications for satellite QKD:

- Eve can collect Alice's signal in full, and send anything to Bob
- No channel assumptions are made

Unrestricted eavesdropping:

Eve has complete access to the channel

Implications for satellite QKD:

- Eve can collect Alice's signal in full, and send anything to Bob
- No channel assumptions are made

Can we relax this for line of sight satellite links? Could we monitor the link, alerting us to eavesdropping objects?

[Phys. Rev. Applied 14 024044 2020], [Entropy 21 397 2019], [Phys. Rev. Applied 16 2021]

[Phys. Rev. Applied 14 024044 2020], [Entropy 21 397 2019], [Phys. Rev. Applied 16 2021]

Difficult for Eve to be in space \rightarrow one might assume a *wiretap channel*

[Phys. Rev. Applied 14 024044 2020], [Entropy 21 397 2019], [Phys. Rev. Applied 16 2021]

Difficult for Eve to be in space \rightarrow one might assume a *wiretap channel*

However it is difficult to verify this through experimental observations

[Phys. Rev. Applied 14 024044 2020], [Entropy 21 397 2019], [Phys. Rev. Applied 16 2021]

Difficult for Eve to be in space \rightarrow one might assume a *wiretap channel*

However it is difficult to verify this through experimental observations

Key goal:

To provide a **generic framework** for restricted Eavesdropping with **verifiable assumptions**

Monitoring possibilities: With detection systems, such as LIDAR, Alice and Bob can possibly rule out the presence of eavesdropping objects of a certain size

Monitoring possibilities: With detection systems, such as LIDAR, Alice and Bob can possibly rule out the presence of eavesdropping objects of a certain size

Implication:

Implication:

 \rightarrow Limit size of Eve's object

Monitoring possibilities: With detection systems, such as LIDAR, Alice and Bob can possibly rule out the presence of eavesdropping objects of a certain size

Monitoring possibilities: With detection systems, such as LIDAR, Alice and Bob can possibly rule out the presence of eavesdropping objects of a certain size

Implication:

 \rightarrow Limit size of Eve's object \rightarrow limit Eve's collection and resend efficiency,

i.e. ideal channels are replaced with lossy channels

Monitoring example using LIDAR

LIDAR with 1W, 4W, Tx power and telescope diameter 30cm, 100cm, for Alice (satellite) and Bob (ground station) resp. LEO satellite altitude 500km.

Monitoring example using LIDAR

LIDAR with 1W, 4W, Tx power and telescope diameter 30cm, 100cm, for Alice (satellite) and Bob (ground station) resp. LEO satellite altitude 500km. Max object size ≈ 20 cm \rightarrow definitely limits her capabilities...

Eve's collection and resend capabilities

Continuing the LIDAR example, preliminary calculations suggest:

A general model

A new QKD scenario

What about signal that does not reach Eve, but might still find its way to Bob?

A general model

A new QKD scenario

What about signal that does not reach Eve, but might still find its way to Bob?

Regardless of the monitoring technique, bounds on η_{AE} , η_{EB} result in a new QKD model which is interesting in its own right...

Satellite QKD with bypass channels
Different models

In principle, some signals that reach Bob may bypass Eve, but Alice and Bob are unable to fully characterise it either. Assume Alice and Bob have characterised η_{AE} , η_{EB} by some means; we are then left with two case:

Scenario (a):

Scenario (b):

Restricted Eavesdropping without bypass

Different models: key rate comparison

Scenario (a):

Scenario (b):

Restricted Eavesdropping without bypass

Different models: key rate comparison

Theorem 1

For a fixed set of observables, secret key rate $(b) \ge$ secret key rate (a).

Why? Attacks in (b) can be viewed as a subset of those in (a).

Different models: key rate comparison

Scenario (b): Extended Alice and Bob box: easy to compute upper bound

Theorem 1

For a fixed set of observables, secret key rate $(b) \ge$ secret key rate (a).

Why? Attacks in (b) can be viewed as a subset of those in (a).

Implications on key rates

We work out the key rate for a CV-QKD system with:

• Lossy bypass channel, $\eta_{EB} = 1$

We work out the key rate for a CV-QKD system with:

- Lossy bypass channel $\eta_{EB} = 1$
- Gaussian encoding

We work out the key rate for a CV-QKD system with:

- Lossy bypass channel $\eta_{EB} = 1$
- Gaussian encoding
- Homodyne detection

We work out the key rate for a CV-QKD system with:

- Lossy bypass channel $\eta_{EB} = 1$
- Gaussian encoding
- Homodyne detection
- Entangling cloner attack

We work out the key rate for a CV-QKD system with:

- Lossy bypass channel $\eta_{EB} = 1$
- Gaussian encoding
- Homodyne detection
- Entangling cloner attack

Recall: bypass is uncharacterised \rightarrow minimise key rate over feasible set

CV-QKD results

CV-QKD results

Measured data are simulated at a total channel loss of 30 dB; η_{EB} = 1

 Reverse reconciliation: Lower bound is very close to upper bound; optimum is achieved when bypass is lossless and noiseless

CV-QKD results

Measured data are simulated at a total channel loss of 30 dB; η_{EB} = 1

- Reverse reconciliation: Lower bound is very close to upper bound; optimum is achieved when bypass is lossless and noiseless
- Direct reconciliation: advantage only at very lower η_{AE}

We also consider BB84 with single photons and phase-randomnised weak coherent pulses

We also consider BB84 with single photons and phase-randomnised weak coherent pulses

ightarrow photon number channel

We also consider BB84 with single photons and phase-randomnised weak coherent pulses

ightarrow photon number channel

• Secret key bits are obtained when Alice sends exactly one photon

We also consider BB84 with single photons and phase-randomnised weak coherent pulses

ightarrow photon number channel

- Secret key bits are obtained when Alice sends exactly one photon
- With a bypass channel we can get detection at Bob with no photon going through Eve

DV-QKD results

Phase randomised WCP offers advantage at lower η_{AE} We can capitalise on cases where no photon has gone through Eve

DV-QKD results

Phase randomised WCP offers advantage at lower η_{AE} We can capitalise on cases where no photon has gone through Eve

 Single photon BB84 <u>is not</u> optimal in the bypass model → eavesdropping restrictions influence best choice of protocol

DV-QKD results

Phase randomised WCP offers advantage at lower η_{AE} We can capitalise on cases where no photon has gone through Eve

- Single photon BB84 <u>is not</u> optimal in the bypass model → eavesdropping restrictions influence best choice of protocol
- · Behaviour we would expect to see in wiretap channel

DV-QKD numerical approach

Ongoing investigation \rightarrow application of numerical security proofs (Winick *et al.*, [Quantum **2**, 77 (2018)]) to this problem.

DV-QKD numerical approach

Ongoing investigation \rightarrow application of numerical security proofs (Winick *et al.*, [Quantum **2**, 77 (2018)]) to this problem.

We can modify this technique to the bypass setting Potential to improve versatility, practicality and tighten bounds

DV-QKD numerical approach

Ongoing investigation \rightarrow application of numerical security proofs (Winick *et al.*, [Quantum **2**, 77 (2018)]) to this problem.

We can modify this technique to the bypass setting Potential to improve versatility, practicality and tighten bounds

As an example for SPS: bypass channels can improve robustness to a detector efficiency mismatch at the receiver

 $\eta_1 = \text{Bob's detector efficiency mismatch}, \ \eta_T \approx \eta_{AE}, \ \eta_S = 1.$

Take home message

Take home message

Take home message

We introduce and study a new setting: QKD with bypass channels, which implies improvements for satellite QKD implementations

• We found a generic (easy to calculate) upper bound

Take home message

- We found a generic (easy to calculate) upper bound
- A lower bound for CV-QKD with RR is very close to this upper bound

Take home message

- We found a generic (easy to calculate) upper bound
- A lower bound for CV-QKD with RR is very close to this upper bound
- Bypass models can achieve non-zero rates when it would vanishes under normal QKD

Take home message

- We found a generic (easy to calculate) upper bound
- A lower bound for CV-QKD with RR is very close to this upper bound
- Bypass models can achieve non-zero rates when it would vanishes under normal QKD
- Similar results for DV QKD

Take home message

We introduce and study a new setting: QKD with bypass channels, which implies improvements for satellite QKD implementations

- We found a generic (easy to calculate) upper bound
- A lower bound for CV-QKD with RR is very close to this upper bound
- Bypass models can achieve non-zero rates when it would vanishes under normal QKD
- Similar results for DV QKD

Numerical approach for better rates, finite statistics, DV-QKD with RR, non-P&M QKD, wider work on unconventional security

Take home message

We introduce and study a new setting: QKD with bypass channels, which implies improvements for satellite QKD implementations

- We found a generic (easy to calculate) upper bound
- A lower bound for CV-QKD with RR is very close to this upper bound
- Bypass models can achieve non-zero rates when it would vanishes under normal QKD
- Similar results for DV QKD

Numerical approach for better rates, finite statistics, DV-QKD with RR, non-P&M QKD, wider work on unconventional security

Thank you for your attention! arXiv:2212.04807

Bonus slides

Generic model for QKD with bypass

Scenario (a) Bob $|\psi_F\rangle \underline{\mathsf{F}}_1$ F₁ ଚ $\rightarrow F_0$ Alice F₀ бŢ В в в $|\psi_E\rangle$ η_{AE} η_{EB} 0 10)

Standard QKD scenario

Standard QKD scenario

Standard QKD scenario

Standard QKD scenario

