Continuous-Variable Quantum Key Distribution at 10 GBaud using an Integrated Photonic-Electronic Receiver

Adnan A.E. Hajomer ^{1,*}, Cédric Bruynsteen ², Ivan Derkach ^{1,3}, Nitin Jain ¹, AxI Bomhals ², Sarah Bastiaens², Ulrik Lund Andersen¹, Xin Yin², And

Tobias Gehring¹

E-mail: aaeha@dtu.dk

¹ Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark.

² Ghent University-imec, IDLab, Dep. INTEC, 9052 Ghent, Belgium

³ Department of Optics, Faculty of Science, Palacky University, Czech Republic

Danmarks Grundforskningsfond

DTU

/nnovation Fund Denmark 🛛 🕇 🞶 C

Research Foundation Flanders

Introduction to CVQKD

Information is encoded in continuous degrees of freedom of light, such as amplitude and phase (x and p) quadratures.

Alice prepares coherent states

Classical processing: Parameter estimation, error correction and privacy amplification

S. Pirandola et al., Advances in optics and Photonics 12, 4(2020)

Homodyne/heterodyne detection for decoding. Standard telecom components work at room temperature.

S. Pirandola et al., Nature communications 8,1 (2017)

F. Laudenbach, et al. Advanced Quantum Technologies 1, 1 (2018): 1800011.

F. Laudenbach, et al. Advanced Quantum Technologies 1.1 (2018): 1800011.

Roadmap of High-rate CVQKD

Publication	Modulation	Symbol rate (Mbaud)
2021-HM. Chin	Gaussian	20
2015-C. Wang	Gaussian	25
2018-T. Wang	Gaussian	50
2015-D. Huang	Gaussian	50
2022-J.Nitin	Gaussian	100

Mature security proof and best performance

OAC/ADC with high bits resolution is required

Quadrature Phase Shift Keying (QPSK)

Probabilistic Constellation Shaping quadrature amplitude modulation (PCS QAM)

Publication	Modulation	Symbol rate (Gbaud)
2022 - H. Wang	QPSK	5
2022 - F. Roumestan	PCS QAM	0.6
2022 - Y. Pan	PCS QAM	1

A. Denys, et al. Quantum 5, 540 (2021). S. Ghorai et al. Phys, Rev. X, (2021).

DTU

Integrated Photonic-Electronic Receiver

Photonic IC

Micrograph assembly

Platform	Bandwidth	Insertion loss	Total efficiency	Transimpedance amplifier
Imec's iSiPP50G	20 GHz	2.5 dB	44 %	100nm GaAs pHEMT

High-frequency roll-off of the transmitter

Independent and Identically Distributed (I.I.D) symbols

High excess noise

A.A.E. Hajomer, et al. npj Quantum Information 8.1 (2022)

Digital signal processing (DSP) for state preparation

Gbaud CVQKD System

Receiver : DSP for quantum symbol recovery

Symbol rate, GBaud	Distance, km	V _M , SNU	Т	Excess noise, % SNU
8	10	1.02	0.684	3.4085
10	5	0.90	0.569	4.9025

- We reported a record experiment of a 10 Gbaud CVQKD system.
- This is achieved by :
 - Streadband Integrated Photonic-Electronic Receiver.

Well-engineered DSP for quantum state preparation and measurement.

The Team

