Tutorial Talk: Certified Deletion

James Bartusek
UC Berkeley

Outline

1. Basic scenario and applications
2. Recipe for constructions
3. Security
4. Certifiable deletion of programs

Outline

1. Basic scenario and applications
2. Recipe for constructions
3. Security
4. Certifiable cleletion of programs

Certified Deletion: Cloud Storage

N

Certified Deletion: Cloud Storage

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal \#1: After deletion, the server won't be able to recover D even given

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal \#1: After deletion, the server won't be able to recover D even given
- Goal \#2: After deletion, the server won't be able to recover D even given unbounded time

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal \#1: After deletion, the server won't be able to recover D even given
- Goal \#2: After deletion, the server won't be able to recover D even given unbounded time
- Requirements: encryption + unclonability

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal \#1: After deletion, the server won't be able to recover D even given
- Goal \#2: After deletion, the server won't be able to recover D even given unbounded time
- Requirements: encryption + unclonability
[Broadbent, Islam 20]

Certified Deletion: Cloud Storage

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal \#1: After deletion, the server won't be able to recover D even given
- Goal \#2: After deletion, the server won't be able to recover D even given unbounded time
- Requirements: encryption + unclonability

Certified Deletion: Delegation

Certified Deletion: Delegation

Certified Deletion: Delegation

Certified Deletion: Delegation

- Server can compute and return $f(\mathrm{D})$ along with a proof \equiv 回 that they erased all other information about D

Certified Deletion: Delegation

- Server can compute and return $f(\mathrm{D})$ along with a proof \equiv 三昌 that they erased all other information about D

Certified Deletion: Timed-Release Encryption

Certified Deletion: Timed-Release Encryption

After time $T:\left|D^{8}\right\rangle \longrightarrow D$

Certified Deletion: Timed-Release Encryption

Certified Deletion: Timed-Release Encryption

Certified Deletion: Timed-Release Encryption

- Wills

Certified Deletion: Timed-Release Encryption

- Wills
- Deposits

Certified Deletion: Timed-Release Encryption

- Wills
- Deposits

Outline

1. Basic scenario and applications

2. Recipe for constructions
3. Security
4. Certifiable deletion of programs

Approach

Approach

- Modularize: think about the quantum information and crypto components separately

Approach

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle

Approach

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle
- We need states that can simultaneously encode information in two conjugate bases

Approach

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle
- We need states that can simultaneously encode information in two conjugate bases
- One basis will encode plaintext information

Approach

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle
- We need states that can simultaneously encode information in two conjugate bases
- One basis will encode plaintext information
- The other will encode valid deletion certificates

General Recipe

General Recipe

For a subspace $S \subset \mathbb{F}_{2}^{n}$ and vectors $x \in \operatorname{co}(S), z \in \operatorname{co}\left(S^{\perp}\right)$, define

$$
\left|S_{x, z}\right\rangle=\frac{1}{\sqrt{|S|}} \sum_{s \in S}(-1)^{s \cdot z}|s+x\rangle
$$

General Recipe

For a subspace $S \subset \mathbb{F}_{2}^{n}$ and vectors $x \in \operatorname{co}(S), z \in \operatorname{co}\left(S^{\perp}\right)$, define

$$
\left|S_{x, z}\right\rangle=\frac{1}{\sqrt{|S|}} \sum_{s \in S}(-1)^{s \cdot z}|s+x\rangle
$$

General Recipe

For a subspace $S \subset \mathbb{F}_{2}^{n}$ and vectors $x \in \operatorname{co}(S), z \in \operatorname{co}\left(S^{\perp}\right)$, define

$$
\left|S_{x, z}\right\rangle=\frac{1}{\sqrt{|S|}} \sum_{s \in S}(-1)^{s \cdot z}|s+x\rangle
$$

$\mathrm{H}^{\otimes n} \downarrow$

$$
\left|S_{z, x}^{\perp}\right\rangle=\frac{1}{\sqrt{\left|S^{\perp}\right|}} \sum_{s \in S^{\perp}}(-1)^{s \cdot x}|s+z\rangle
$$

General Recipe

For a subspace $S \subset \mathbb{F}_{2}^{n}$ and vectors $x \in \operatorname{co}(S), z \in \operatorname{co}\left(S^{\perp}\right)$, define

$$
\left|S_{x, z}\right\rangle=\frac{1}{\sqrt{|S|}} \sum_{s \in S}(-1)^{s \cdot z}|s+x\rangle
$$

$$
\begin{aligned}
& \mathrm{H}^{\otimes n} \downarrow \\
& \quad\left|S_{z, x}^{\perp}\right\rangle=\frac{1}{\sqrt{\left|S^{\perp}\right|}} \sum_{s \in S^{\perp}}(-1)^{s \cdot x}|s+z\rangle
\end{aligned}
$$

Uncertainty principle: $\mathcal{A}\left(\left|S_{x, z}\right\rangle\right) \nRightarrow\left(s \in S+x, s^{\prime} \in S^{\perp}+z\right)$ (if S, x, z are sufficiently random)

General Recipe

For a subspace $S \subset \mathbb{F}_{2}^{n}$ and vectors $x \in \operatorname{co}(S), z \in \operatorname{co}\left(S^{\perp}\right)$, define

$$
\left|S_{x, z}\right\rangle=\frac{1}{\sqrt{|S|}} \sum_{s \in S}(-1)^{s \cdot z}|s+x\rangle \quad \text { Use } x \text { to hide the plaintext }
$$

$$
\left|S_{z, x}^{\perp}\right\rangle=\frac{1}{\sqrt{\left|S^{\perp}\right|}} \sum_{s \in S^{\perp}}(-1)^{s \cdot x}|s+z\rangle \quad \text { Use } z \text { as certificate of deletion }
$$

Uncertainty principle: $\mathcal{A}\left(\left|S_{x, z}\right\rangle\right) \nRightarrow\left(s \in S+x, s^{\prime} \in S^{\perp}+z\right)$ (if S, x, z are sufficiently random)

General Recipe

General Recipe

Notation

- \mathcal{C} : cryptosystem with decryption key $s k$
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

General Recipe

Notation

- \mathcal{C} : cryptosystem with decryption key $s k$
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

EncCD (b):

- Sample $(S, x, z) \leftarrow \mathcal{D}$
- Sample $h \leftarrow \mathcal{H}$
- Output $\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

General Recipe

Notation

- \mathcal{C} : cryptosystem with decryption key $s k$
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Decryption given $s k$:

- Use $s k$ to learn S and h
- Measure $\left|S_{x, z}\right\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use $h(x)$ to learn the plaintext b

EncCD (b) :

- Sample $(S, x, z) \leftarrow \mathcal{D}$
- Sample $h \leftarrow \mathcal{H}$
- Output $\left|S_{x, Z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

General Recipe

Notation

- \mathcal{C} : cryptosystem with decryption key $s k$
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

EncCD (b) :

- Sample $(S, x, z) \leftarrow \mathcal{D}$
- Sample $h \leftarrow \mathcal{H}$
- Output $\left|S_{x, Z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

Decryption given $s k$:

- Use $s k$ to learn S and h
- Measure $\left|S_{x, z}\right\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use $h(x)$ to learn the plaintext b

Deletion:

- Measure $\left|S_{x, z}\right\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp}+z$

One-time pad

General Recipe

 Public-key encryptionCommitment
Timed-release encryption

Notation

- \mathcal{C} :cryptosystem with decryption key $s k$
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Decryption given $s k$:

- Use $s k$ to learn S and h
- Measure $\left|S_{x, z}\right\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use $h(x)$ to learn the plaintext b

EncCD (b) :

- Sample $(S, x, z) \leftarrow \mathcal{D}$
- Sample $h \leftarrow \mathcal{H}$
- Output $\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

Deletion:

- Measure $\left|S_{x, z}\right\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp}+z$

One-time pad

General Recipe

 Public-key encryptionCommitment
Timed-release encryption

Notation

- \mathcal{C} : Cryptosystem with decryption key $s k$
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Randomness extractor with seed h

Decryption given $s k$:

- Use $s k$ to learn S and h
- Measure $\left|S_{x, z}\right\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use $h(x)$ to learn the plaintext b

EncCD (b):

- Sample $(S, x, z) \leftarrow \mathcal{D}$
- Sample $h \leftarrow \mathcal{H}$
- Output $\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

Deletion:

- Measure $\left|S_{x, z}\right\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp}+z$

One-time pad

General Recipe

 Public-key encryptionCommitment
Timed-release encryption

Notation

- \mathcal{C} : Cryptosystem with decryption key $s k$
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Randomness extractor with seed h

Decryption given $s k$:

- Use $s k$ to learn S and h
- Measure $\left|S_{x, z}\right\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use $h(x)$ to learn the plaintext b

EncCD (b):

- Sample $(S, x, z) \leftarrow \mathcal{D}$
- Sample $h \leftarrow \mathcal{H}$
- Output $\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

Deletion:

- Measure $\left|S_{x, z}\right\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp}+z$

Instantiatiating the distribution over S

Optimize for...

Instantiatiating the distribution over S

Optimize for...

Practicality

Instantiatiating the distribution over S

Optimize for...

> Practicality
> S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}}=1$

Instantiatiating the distribution over S

Optimize for...

> Practicality S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$ $\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle$, $\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

Instantiatiating the distribution over S

Optimize for...

| Practicality |
| :---: | :--- | :--- |
| S spanned by standard basis |
| vectors (Wiesner/BB84 states): |
| $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{: \theta_{i}=1}$ |
| $\mathrm{H}^{\theta_{1}}\left\|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left\|x_{n}\right\rangle$, |
| $\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$ |
| No entanglement required |

Instantiatiating the distribution over S

Optimize for...

| Practicality |
| :---: | :---: |
| S spanned by standard basis |
| vectors (Wiesner/BB84 states): |
| $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{: \theta_{i}=1}$ |
| $\mathrm{H}^{\theta_{1}}\left\|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left\|x_{n}\right\rangle$, |
| $\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$ |
| No entanglement required |
| $[\mathrm{BI} 20]$ |

Instantiatiating the distribution over S

Optimize for...

Practicality	Publicly-Verifiable Deletion
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$	
$\mathrm{H}^{\theta_{1}}\left\|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left\|x_{n}\right\rangle$, $\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$	
No entanglement required	
$[$ BI20]	

Instantiatiating the distribution over S

Optimize for...

Practicality
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$ $\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle$,
$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

S has dimension $n-1$, so $S^{\perp}=\left\{0^{n}, v\right\}$

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

$$
\begin{gathered}
S \text { has dimension } n-1, \\
\text { so } S^{\perp}=\left\{0^{n}, v\right\} \\
\mathrm{H}^{\otimes n}\left(|z\rangle+(-1)^{x}|z+v\rangle\right), \\
\mathcal{C}_{s k}(v), b \oplus x
\end{gathered}
$$

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

$$
\begin{gathered}
S \text { has dimension } n-1, \\
\text { so } S^{\perp}=\left\{0^{n}, v\right\} \\
\mathrm{H}^{\otimes n}\left(|z\rangle+(-1)^{x}|z+v\rangle\right), \\
\mathcal{C}_{s k}(v), b \oplus x
\end{gathered}
$$

Only two valid deletion certificates, so publish OWF (z), $0 \mathrm{OWF}(z+v)$

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

S has dimension $n-1$,
so $S^{\perp}=\left\{0^{n}, v\right\}$
$\mathrm{H}^{\otimes n}\left(|z\rangle+(-1)^{x}|z+v\rangle\right)$,
$\mathcal{C}_{s k}(v), b \oplus x$

Only two valid deletion certificates, so publish $\operatorname{OWF}(z), \operatorname{OWF}(z+v)$
[BKMPW23]

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion
Publicly-Verifiable Ciphertext

Only two valid deletion certificates, so publish OWF (z), $0 \mathrm{OWF}(z+v)$
[BKMPW23]

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

S has dimension $n-1$, so $S^{\perp}=\left\{0^{n}, v\right\}$
$\mathrm{H}^{\otimes n}\left(|z\rangle+(-1)^{x}|z+v\rangle\right)$, $\mathcal{C}_{s k}(v), b \oplus x$

Only two valid deletion certificates, so publish OWF (z), $0 \mathrm{OWF}(z+v)$

Publicly-Verifiable Ciphertext

S uniform over all subspaces

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

S has dimension $n-1$, so $S^{\perp}=\left\{0^{n}, v\right\}$
$\mathrm{H}^{\otimes n}\left(|z\rangle+(-1)^{x}|z+v\rangle\right)$, $\mathcal{C}_{s k}(v), b \oplus x$

Only two valid deletion certificates, so publish OWF (z), $0 \mathrm{OWF}(z+v)$

Publicly-Verifiable Ciphertext

S uniform over all subspaces

$$
\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)
$$

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

S has dimension $n-1$, so $S^{\perp}=\left\{0^{n}, v\right\}$
$\mathrm{H}^{\otimes n}\left(|z\rangle+(-1)^{x}|z+v\rangle\right)$, $\mathcal{C}_{s k}(v), b \oplus x$

Only two valid deletion certificates, so publish OWF (z), $0 \mathrm{OWF}(z+v)$

Publicly-Verifiable Ciphertext

S uniform over all subspaces
$\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

Secure even given oracle access to $S+x$

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow\{0,1\}^{n}, S=\operatorname{span}\left\{e_{i}\right\}_{i: \theta_{i}=1}$

$$
\mathrm{H}^{\theta_{1}}\left|x_{1}\right\rangle, \ldots, \mathrm{H}^{\theta_{n}}\left|x_{n}\right\rangle,
$$

$\mathcal{C}_{s k}(\theta, h), b \oplus h\left(\left\{x_{i}\right\}_{i: \theta_{i}=0}\right)$

No entanglement required

Publicly-Verifiable Deletion

S has dimension $n-1$, so $S^{\perp}=\left\{0^{n}, v\right\}$
$\mathrm{H}^{\otimes n}\left(|z\rangle+(-1)^{x}|z+v\rangle\right)$, $\mathcal{C}_{s k}(v), b \oplus x$

Only two valid deletion certificates, so publish OWF (z), $0 \mathrm{OWF}(z+v)$
[BKMPW23]

Publicly-Verifiable Ciphertext

S uniform over all subspaces
$\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)$

Secure even given oracle access to $S+x$

Outline

1. Basic scenario and applications

2. Recine for constructions

3. Security
4. Certifiable deletion of programs

Security Game

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$
- $\mathcal{A}_{1}\left(\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$,st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}(\mathrm{st}, s k)$

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$

Want: $\mid \operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(0)=1\right]-$
$\operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(1)=1\right] \mid=\mathrm{negl}$

- $\mathcal{A}_{1}\left(\left|S_{x, Z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$, st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}(\mathrm{st}, s k)$

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$

Want: $\mid \operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(0)=1\right]-$
$\operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(1)=1\right] \mid=\mathrm{negl}$

- $\mathcal{A}_{1}\left(\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$, st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}(\mathrm{st}, \mathrm{sk})$

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$

Want: $\mid \operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(0)=1\right]-$
$\operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(1)=1\right] \mid=\mathrm{negl}$

- $\mathcal{A}_{1}\left(\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$, st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}(\mathrm{st}, \mathrm{sk})$

History

- [Broadbent, Islam 20]:
- \mathcal{C} one-time pad
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ unbounded

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$

Want: $\mid \operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(0)=1\right]-$
$\left.\operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(1)=1\right] \mid=\operatorname{negl}\right]$

- $\mathcal{A}_{1}\left(\left|S_{x, Z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$, st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}(\mathrm{st}, s k)$

History

- [Broadbent, Islam 20]:
- \mathcal{C} one-time pad
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
- \mathcal{C} non-committing encryption scheme
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ computationally bounded

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$

Want: $\mid \operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(0)=1\right]-$
$\left.\operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(1)=1\right] \mid=\operatorname{negl}\right]$

- $\mathcal{A}_{1}\left(\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$, st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}$ (st, sk)

History

- [Broadbent, Islam 20]:
- \mathcal{C} one-time pad
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
- \mathcal{C} non-committing encryption scheme
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ computationally bounded
- [B, Khurana 23]:
- \mathcal{C} semantically-secure distribution
- $\mathcal{H}=\oplus$
- \mathcal{D} Wiesner states
- \mathcal{A}_{1} computationally bounded, \mathcal{A}_{2} unbounded

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$

$$
\text { Want: } \begin{aligned}
\mid \operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{E}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(0)\right. & =1]- \\
\operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(1)\right. & =1] \mid=\mathrm{negl}
\end{aligned}
$$

- $\mathcal{A}_{1}\left(\left|S_{x, Z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$, st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}(\mathrm{st}, s k)$

History

- [Broadbent, Islam 20]:
- \mathcal{C} one-time pad
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
- \mathcal{C} non-committing encryption scheme
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ computationally bounded
- [B, Khurana 23]:
- \mathcal{C} semantically-secure distribution
- $\mathcal{H}=\oplus$
- \mathcal{D} Wiesner states
- \mathcal{A}_{1} computationally bounded, \mathcal{A}_{2} unbounded
- [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
- \mathcal{C} subspace-hiding distribution
- $\mathcal{H}=\bigoplus$
- \mathcal{D} subspace states
- \mathcal{A}_{1} computationally bounded, \mathcal{A}_{2} unbounded

Security Game

$\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(b)$

- Sample $(S, x, z) \leftarrow \mathcal{D}, h \leftarrow \mathcal{H}$, and $s k$
- $\mathcal{A}_{1}\left(\left|S_{x, z}\right\rangle, \mathcal{C}_{s k}(S, h), b \oplus h(x)\right) \rightarrow \pi$, st
- If $\pi \notin S^{\perp}+z$, output $b^{\prime} \leftarrow\{0,1\}$
- Otherwise, output $b^{\prime} \leftarrow \mathcal{A}_{2}$ (st, sk)

Want: $\mid \operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(0)=1\right]-$
$\left.\operatorname{Pr}\left[\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}(1)=1\right] \mid=\operatorname{negl}\right]$
Note: [Unruh 13] showed similar statement for a slightly different template supporting quantum certificates of deletion

History

- [Broadbent, Islam 20]:
- \mathcal{C} one-time pad
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
- \mathcal{C} non-committing encryption scheme
- \mathcal{H} good randomness extractor
- \mathcal{D} Wiesner states
- $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ computationally bounded
- [B, Khurana 23]:
- \mathcal{C} semantically-secure distribution
- $\mathcal{H}=\oplus$
- \mathcal{D} Wiesner states
- \mathcal{A}_{1} computationally bounded, \mathcal{A}_{2} unbounded
- [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
- \mathcal{C} subspace-hiding distribution
- $\mathcal{H}=\oplus$
- \mathcal{D} subspace states
- \mathcal{A}_{1} computationally bounded, \mathcal{A}_{2} unbounded

Example Proof

Example Proof

- Let \mathcal{C} be a computationally-hiding statistically-binding commitment
- Let $\mathcal{H}=\bigoplus$ (unseeded)
- Let \mathcal{D} sample a uniformly random (S, x, z)
- Let \mathcal{A}_{1} be computationally bounded and \mathcal{A}_{2} be unbounded

Example Proof

- Let \mathcal{C} be a computationally-hiding statistically-binding commitment
- Let $\mathcal{H}=\bigoplus$ (unseeded)
- Let \mathcal{D} sample a uniformly random (S, x, z)
- Let \mathcal{A}_{1} be computationally bounded and \mathcal{A}_{2} be unbounded
$\underline{\mathcal{A}}$

$$
\begin{gathered}
\underset{\operatorname{Hyb}_{0}(b)}{\underline{C h}} \\
\stackrel{\operatorname{Com}(S), b \oplus_{i} x_{i},\left|S_{x, z}\right\rangle}{\rightleftarrows \pi, \text { st }} \begin{array}{c}
\text { If } \pi \notin S^{\perp}+z, \text { output }|\perp\rangle\langle\perp| \\
\text { Otherwise, output st }(S, x, z)
\end{array}
\end{gathered}
$$

Example Proof

- Let \mathcal{C} be a computationally-hiding statistically-binding commitment
- Let $\mathcal{H}=\bigoplus$ (unseeded)
- Let \mathcal{D} sample a uniformly random (S, x, z)
- Let \mathcal{A}_{1} be computationally bounded and \mathcal{A}_{2} be unbounded
$\underline{\mathcal{A}}$
$\mathrm{Hyb}_{0}(b)$
$\underline{C h}$
Sample (S, x, z)
$\operatorname{Com}(S), b \oplus_{i} x_{i},\left|S_{x, z}\right\rangle$
If $\pi \notin S^{\perp}+z$, output $|\perp\rangle\langle\perp|$
Otherwise, output st

Goal: Show that $\mathrm{TD}\left(\operatorname{Hyb}_{0}(0), \operatorname{Hyb}_{0}(1)\right)=$ negl

Example Proof

Hybrid 1: Delay the dependence of the experiment on b

Example Proof

Hybrid 1: Delay the dependence of the experiment on b

$$
\mathrm{TD}\left(\operatorname{Hyb}_{1}(0), \operatorname{Hyb}_{1}(1)\right)=\frac{1}{2} \mathrm{TD}\left(\operatorname{Hyb}_{0}(0), \operatorname{Hyb}_{0}(1)\right)
$$

$\underline{\mathcal{A}}$

Example Proof

Hybrid 1: Delay the dependence of the experiment on b

$$
\mathrm{TD}\left(\operatorname{Hyb}_{1}(0), \operatorname{Hyb}_{1}(1)\right)=\frac{1}{2} \mathrm{TD}\left(\operatorname{Hyb}_{0}(0), \operatorname{Hyb}_{0}(1)\right)
$$

$\underline{\mathcal{A}}$	$\mathrm{Hyb}_{1}($ b $)$	$\underline{C h}$
	$\operatorname{Com}(S), b^{\prime},\left\|S_{x, z}\right\rangle$	$\begin{aligned} & \text { Sample }(S, x, z) \\ & \text { Sample } b^{\prime} \leftarrow\{0,1\} \end{aligned}$
	π, st	
	If $\pi \notin S^{\perp}+z$, output $\|\perp\rangle\langle\perp\|$ If $b \bigoplus_{i} x_{i} \neq b^{\prime}$, output $\|\perp\rangle\langle\perp$ Otherwise, output st	

Remains to show that x has a lot of conditional min-entropy

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

$$
\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy
$\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi$
$\sum_{x \in \operatorname{co}(S)}|x\rangle \quad \mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi$

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

$$
\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

$$
\sum_{x \in \operatorname{co}(S)}|x\rangle \quad \mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

$$
\left\{\begin{aligned}
\text { For } x \in \operatorname{co}(S): & \mathrm{U}_{S}|x\rangle
\end{aligned} \rightarrow \sum_{v \in S^{\perp}}(-1)^{v \cdot x}|v\rangle\right)
$$

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

$$
\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

$$
\sum_{x \in \operatorname{con}(S)} \left\lvert\, \frac{1}{x\rangle} \quad \mathcal{A}\left(\left|S_{x, Z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi \quad\right. \text { For } x \in \operatorname{co}(S): \mathrm{U}_{S}|x\rangle \rightarrow \sum_{v \in S^{\perp}}(-1)^{v \cdot x}|v\rangle
$$

$$
\text { For } v \in S^{\perp}: \quad \mathrm{U}_{S}^{\dagger}|v\rangle \rightarrow \sum_{x \in \operatorname{coo}(S)}(-1)^{v \cdot x}|x\rangle
$$

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

$$
\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

$$
\begin{array}{cc}
\sum_{x \in \operatorname{coo}(S)}|x\rangle & \mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi \\
\sum_{v \in S^{\perp}}|v\rangle & \mathcal{A}\left(\mathrm{H}^{\otimes n}|v+z\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
\end{array}
$$

$$
\begin{aligned}
\text { For } x \in \operatorname{co}(S): \mathrm{U}_{S}|x\rangle & \rightarrow \sum_{v \in S^{\perp}}(-1)^{v \cdot x}|v\rangle \\
\text { For } v \in S^{\perp}: \mathrm{U}_{S}^{\dagger}|v\rangle & \rightarrow \sum_{x \in \operatorname{co}(S)}(-1)^{v \cdot x}|x\rangle
\end{aligned}
$$

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

$$
\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

$$
\begin{aligned}
& \sum_{x \in \operatorname{co}(S)} \left\lvert\, \begin{array}{l}
|x\rangle \\
\sum_{v} \\
\sum_{v \in S^{\perp}}|v\rangle \quad \mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi \\
\mid \text { Project }
\end{array} \quad \mathcal{A}\left(\mathrm{H}^{\otimes n}|v+z\rangle, \operatorname{Com}(S)\right) \rightarrow \pi\right.
\end{aligned}
$$

$$
\text { For } \left.\begin{array}{rl}
x \in \operatorname{co}(S): & \mathrm{U}_{S}|x\rangle
\end{array} \rightarrow \sum_{v \in S^{\perp}}(-1)^{v \cdot x}|v\rangle\right)
$$

$$
|\pi-z\rangle
$$

Claim: if \mathcal{A} given random $v+z$ and outputs $\pi \in S^{\perp}+z$, then $\pi=v+z$ with overwhelming probability (over S, z)

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

$$
\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

$$
\left.\begin{array}{rl}
\text { For } x \in \operatorname{co}(S): & \mathrm{U}_{S}|x\rangle
\end{array} \rightarrow \sum_{v \in S^{\perp}}(-1)^{v \cdot x}|v\rangle\right)
$$

Claim: if \mathcal{A} given random $v+z$ and outputs $\pi \in S^{\perp}+z$, then $\pi=v+z$ with overwhelming probability (over S, z)

Example Proof

Want to show: If $\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right)$ outputs $\pi \in S^{\perp}+z$, then x has a lot of conditional min-entropy

$$
\mathcal{A}\left(\left|S_{x, z}\right\rangle, \operatorname{Com}(S)\right) \rightarrow \pi
$$

$$
\text { For } x \in \operatorname{co}(S): U_{S}|x\rangle \rightarrow \sum_{v \in S^{\perp}}(-1)^{v \cdot x}|v\rangle
$$

$$
\text { For } v \in S^{\perp}: \quad \mathrm{U}_{S}^{\dagger}|v\rangle \rightarrow \sum_{x \in \operatorname{co}(S)}(-1)^{v \cdot x}|x\rangle
$$

Claim: if \mathcal{A} given random $v+z$ and outputs $\pi \in S^{\perp}+z$, then $\pi=v+z$ with overwhelming probability (over S, z)
$\sum_{x \in \operatorname{co}(S)}(-1)^{(\pi-z) \cdot x}|x\rangle$
Measuring gives a uniformly random $x \in \operatorname{co}(S)$, independent of \mathcal{A} 's view

Outline

1. Basic scenario and applications

2. Recine for constructions
3. Security
4. Certifiable deletion of programs

Plan

- (Indistinguishability) obfuscation with certified deletion
- Applications
- Comparison with other notions

sotware leasing

Obfuscation with Certified Deletion

Obfuscation with Certified Deletion

Rough goal:

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:
[BGGKMRR23]
$\left|S_{x, z}\right\rangle, \operatorname{Cobf}(\mathrm{P}[S, f \oplus x])$
$\mathrm{P}[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some vay, after deletion it is not

Candidate construction:
[BGGKMRR23]
$\left|S_{x, z}\right\rangle, \operatorname{Cobf}(\mathrm{P}[S, f \oplus x])$
$\mathrm{P}[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:
[BGGKMRR23]
$\left|S_{x, z}\right\rangle, \operatorname{Cobf}(\mathrm{P}[S, f \oplus x])$
$\mathrm{P}[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Correctness: \quad Given any input y, evaluate $\operatorname{Obf}(\mathrm{P}[S, f \oplus x])$ on y and in superposition over $S+x$ to learn $f(y)$

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:
[BGGKMRR23]
$\left|S_{x, z}\right\rangle, \operatorname{Cobf}(\mathrm{P}[S, f \oplus x])$
$\mathrm{P}[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Issue with security: By querying on different $v \notin S+x$, can potentially learn evaluations of functions whose description is related to f

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:
[BGGKMRR23]
$\left|S_{x_{z}}\right\rangle, \operatorname{Cobf}(\mathrm{P}[S, f \oplus x])$
$\mathrm{P}[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Solution: P should only accept authentic vectors v derived from the state $\left|S_{x, z}\right\rangle$

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:
[BGGKMRR23]
$\left|S_{x, z}\right\rangle, \operatorname{CObf}(\mathrm{P}[S, T, u, f \oplus x])$
$\mathrm{P}[S, T, u, \tilde{f}](y, v):$

- Abort if $v \notin T+u$
- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Solution: $\quad \mathrm{P}$ should only accept authentic vectors v derived from the state $\left|S_{x, z}\right\rangle$ Define authentic vectors via a random superspace $T+u \supset S+x$

Obfuscation with Certified Deletion

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:
[BGGKMRR23]
$\left|S_{x, z}\right\rangle, \operatorname{CObf}(\mathrm{P}[S, T, u, f \oplus x])$
$\mathrm{P}[S, T, u, \tilde{f}](y, v):$

- Abort if $v \notin T+u$
- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Solution: $\quad \mathrm{P}$ should only accept authentic vectors v derived from the state $\left|S_{x, z}\right\rangle$ Define authentic vectors via a random superspace $T+u \supset S+x$ Hard for the adversary to query on any authentic vector not in $S+x$

Obfuscation with Certified Deletion

If CObf is modeled as a classical oracle:

- Before deletion, evaluator can use the oracle to learn $f(y)$ for any y of their choice
- After deletion (outputting $v \in S^{\perp}+z$), the evaluator cannot learn anything else from the oracle even given unbounded queries

Candidate construction:
[BGGKMRR23]
$\left|S_{x, z}\right\rangle, \operatorname{CObf}(\mathrm{P}[S, T, u, f \oplus x])$
$\mathrm{P}[S, T, u, \tilde{f}](y, v):$

- Abort if $v \notin T+u$
- Let x be the coset of S that v belongs to
- Let $f=\tilde{f} \oplus x$
- Output $f(y)$

Solution: $\quad \mathrm{P}$ should only accept authentic vectors v derived from the state $\left|S_{x, z}\right\rangle$ Define authentic vectors via a random superspace $T+u \supset S+x$ Hard for the adversary to query on any authentic vector not in $S+x$

Without Oracles...

Without Oracles...

Indistinguishability obfuscation

Without Oracles...

Indistinguishability obfuscation

- For any two functionally equivalent circuits $\mathrm{C}_{0}, \mathrm{C}_{1}, \operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{c} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$

Without Oracles...

Indistinguishability obfuscation with certified deletion

- For any two functionally equivalent circuits $\mathrm{C}_{0}, \mathrm{C}_{1}, \operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{c} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$, and after deletion $\operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{s} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$

Without Oracles...

Indistinguishability obfuscation with certified deletion

- For any two functionally equivalent circuits $\mathrm{C}_{0}, \mathrm{C}_{1}, \operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{c} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$, and after deletion $\operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{s} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$

Satisfied by a slightly modified construction

Without Oracles...

Indistinguishability obfuscation with certified deletion

- For any two functionally equivalent circuits $\mathrm{C}_{0}, \mathrm{C}_{1}, \operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{c} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$, and after deletion $\operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{s} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:

Without Oracles...

Indistinguishability obfuscation with certified deletion

- For any two functionally equivalent circuits $\mathrm{C}_{0}, \mathrm{C}_{1}, \operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{c} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$, and after deletion $\operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{s} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:

- Two-message delegation with certified deletion

Without Oracles...

Indistinguishability obfuscation with certified deletion

- For any two functionally equivalent circuits $\mathrm{C}_{0}, \mathrm{C}_{1}, \operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{c} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$, and after deletion $\operatorname{Obf}\left(\mathrm{C}_{0}\right) \approx_{s} \operatorname{Obf}\left(\mathrm{C}_{1}\right)$

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:

- Two-message delegation with certified deletion
- A generic compiler from encryption to encryption with revocable secret keys

Encryption with Revocable / Deletable Secret Keys

- Gen \rightarrow pk, vk, |sk \rangle
- Enc $(\mathrm{pk}, m) \rightarrow \mathrm{ct}$
- $\operatorname{Dec}(\mid$ sk $\rangle, \mathrm{ct}) \rightarrow m$
- $\operatorname{Del}(\mid$ sk $\rangle) \rightarrow$ cert
- $\operatorname{Ver}(\mathrm{vk}, \mathrm{cert}) \rightarrow \mathrm{T} / \perp$

Encryption with Revocable / Deletable Secret Keys

- Gen \rightarrow pk, vk, |sk \rangle
- Enc $(p k, m) \rightarrow c t$
- $\operatorname{Dec}(\mid$ sk \rangle, ct $) \rightarrow m$

Deletion security: ciphertexts

- $\operatorname{Del}(\mid$ sk $\rangle) \rightarrow$ cert generated after successful deletion of $|\mathrm{sk}\rangle$ are semantically secure
- $\operatorname{Ver}(\mathrm{vk}, \mathrm{cert}) \rightarrow \mathrm{T} / \perp$

Encryption with Revocable / Deletable Secret Keys

- Gen \rightarrow pk, vk, |sk \rangle
- Enc $(p k, m) \rightarrow c t$
- $\operatorname{Dec}(\mid$ sk \rangle, ct $) \rightarrow m$

Deletion security: ciphertexts generated after successful deletion

- Del(|sk $\rangle) \rightarrow$ cert of |sk \rangle are semantically secure
- $\operatorname{Ver}(\mathrm{vk}$, cert $) \rightarrow \mathrm{T} / \perp$

Simple compiler: \mid sk $\rangle=\operatorname{iOCD}(\operatorname{Dec}($ sk, $\cdot)$) [BGGMKRR23]

Encryption with Revocable / Deletable Secret Keys

- Gen \rightarrow pk, vk, |sk \rangle
- Enc $(p k, m) \rightarrow c t$
- $\operatorname{Dec}(\mid$ sk \rangle, ct $) \rightarrow m$
- $\operatorname{Del}(\mid$ sk $\rangle) \rightarrow$ cert

Deletion security: ciphertexts generated after successful deletion of |sk \rangle are semantically secure

- $\operatorname{Ver}($ vk, cert $) \rightarrow T / \perp$

Simple compiler: \mid sk $\rangle=\operatorname{iOCD}($ Dec $($ sk, $\cdot))$ [BGGMKRR23]
Gives publicly-verifiable revocation if iOCD is publicly verifiable

Encryption with Revocable / Deletable Secret Keys

- Gen \rightarrow pk, vk, |sk \rangle
- Enc $(p k, m) \rightarrow c t$
- $\operatorname{Dec}(\mid$ sk \rangle, ct $) \rightarrow m$
- $\operatorname{Del}(\mid$ sk $\rangle) \rightarrow$ cert

Deletion security: ciphertexts generated after successful deletion of |sk \rangle are semantically secure

- $\operatorname{Ver}(\mathrm{vk}, \mathrm{cert}) \rightarrow \mathrm{T} / \perp$

Simple compiler: \mid sk $\rangle=\operatorname{iOCD}($ Dec $($ sk, $\cdot))$ [BGGMKRR23]
Gives publicly-verifiable revocation if iOCD is publicly verifiable
Privately-verifiable revocation from standard assumptions: [Kitagawa, Nishimaki 22], [Agarwal, Kitagawa, Nishimaki, Yamada, Yamakawa 23], [Ananth, Poremba, Vaikuntanathan 23]

Related Notions

Hard for the adversary to produce...

Related Notions

Hard for the adversary to produce...

Related Notions

Hard for the adversary to produce...

certificate derived
from program

Related Notions

Hard for the adversary to produce...

certificate derived
from program

Future Directions

Future Directions

- Prove the security of $\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}$ when

Future Directions

- Prove the security of $\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}$ when
- Encoding super-logarithmic bits per subspace state

Future Directions

- Prove the security of $\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}$ when
- Encoding super-logarithmic bits per subspace state
- \mathcal{C} is any semantically-secure distribution and \mathcal{H} is a good seeded randomness extractor

Future Directions

- Prove the security of $\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}$ when
- Encoding super-logarithmic bits per subspace state
- \mathcal{C} is any semantically-secure distribution and \mathcal{H} is a good seeded randomness extractor
- Robustness to noise (beyond one-time pad [BI20])

Future Directions

- Prove the security of $\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}$ when
- Encoding super-logarithmic bits per subspace state
- \mathcal{C} is any semantically-secure distribution and \mathcal{H} is a good seeded randomness extractor
- Robustness to noise (beyond one-time pad [BI20])
- Publicly-verifiable revocation/deletion without post-quantum iO

Future Directions

- Prove the security of $\operatorname{CDExp}_{\mathcal{C}, \mathcal{H}, \mathcal{D}, \mathcal{A}_{1}, \mathcal{A}_{2}}$ when
- Encoding super-logarithmic bits per subspace state
- \mathcal{C} is any semantically-secure distribution and \mathcal{H} is a good seeded randomness extractor
- Robustness to noise (beyond one-time pad [BI20])
- Publicly-verifiable revocation/deletion without post-quantum iO
- More rigorous understanding of the relationship between unclonable primitives from previous slide ([Ananth, Kaleoglu, Liu 23])

