Tutorial Talk: Certified Deletion

James Bartusek UC Berkeley

Outline

- 1. Basic scenario and applications
- 2. Recipe for constructions
- 3. Security
- 4. Certifiable deletion of programs

Outline

1. Basic scenario and applications

- 2. Recipe for constructions
- 3. Security
- 4. Certifiable deletion of programs

• Assumption: Malicious server cannot recover D from the encoding in polynomial time

• Assumption: Malicious server cannot recover D from the encoding in polynomial time

• Assumption: Malicious server cannot recover D from the encoding in polynomial time

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal #1: After deletion, the server won't be able to recover D even given 🔍

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal #1: After deletion, the server won't be able to recover D even given
- Goal #2: After deletion, the server won't be able to recover D even given unbounded time

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal #1: After deletion, the server won't be able to recover D even given
- Goal #2: After deletion, the server won't be able to recover D even given unbounded time
- Requirements: encryption + unclonability

[Broadbent, Islam 20] [Hiroka, Morimae, Nishimaki, Yamakawa 21]

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal #1: After deletion, the server won't be able to recover D even given \mathbb{Q}_{3}
- Goal #2: After deletion, the server won't be able to recover D even given unbounded time
- Requirements: encryption + unclonability

[Broadbent, Islam 20] [Hiroka, Morimae, Nishimaki, Yamakawa 21]

Classically: [Garg, Goldwasser, Vasudevan 20]

- Assumption: Malicious server cannot recover D from the encoding in polynomial time
- Goal #1: After deletion, the server won't be able to recover D even given
- Goal #2: After deletion, the server won't be able to recover D even given unbounded time
- Requirements: encryption + unclonability

• Server can compute and return f(D) along with a proof $\equiv \Omega$ that they erased *all other* information about D

[Broadbent, Islam 20] [Poremba 23] [**B**, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]

• Server can compute and return f(D) along with a proof $\equiv \Omega$ that they erased *all other* information about D

Before time *T*: "Please delete my data"

• Wills

- Wills
- Deposits

[Unruh 13]

[**B**, Khurana 23]

- Wills
- Deposits

Outline

- 1. Basic scenario and applications
- 2. Recipe for constructions
- 3. Security
- 4. Certifiable deletion of programs

• Modularize: think about the quantum information and crypto components separately

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle
- We need states that can simultaneously encode information in two conjugate bases

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle
- We need states that can simultaneously encode information in two conjugate bases
 - One basis will encode plaintext information

- Modularize: think about the quantum information and crypto components separately
- Take advantage of the uncertainty principle
- We need states that can simultaneously encode information in two conjugate bases
 - One basis will encode plaintext information
 - The other will encode valid deletion certificates

For a subspace $S \subset \mathbb{F}_2^n$ and vectors $x \in co(S), z \in co(S^{\perp})$, define

$$|S_{x,z}\rangle = \frac{1}{\sqrt{|S|}} \sum_{s \in S} (-1)^{s \cdot z} |s + x\rangle$$

co(S): a set of coset representatives of S

For a subspace $S \subset \mathbb{F}_2^n$ and vectors $x \in co(S), z \in co(S^{\perp})$, define

$$\left|S_{x,z}\right\rangle = \frac{1}{\sqrt{|S|}} \sum_{s \in S} (-1)^{s \cdot z} |s + x\rangle$$

co(S): a set of coset representatives of S

For a subspace $S \subset \mathbb{F}_2^n$ and vectors $x \in co(S), z \in co(S^{\perp})$, define

$$|S_{x,z}\rangle = \frac{1}{\sqrt{|S|}} \sum_{s \in S} (-1)^{s \cdot z} |s + x\rangle$$
$$H^{\bigotimes n} \oint |S_{z,x}^{\perp}\rangle = \frac{1}{\sqrt{|S^{\perp}|}} \sum_{s \in S^{\perp}} (-1)^{s \cdot x} |s + z\rangle$$
co(S): a set of coset representatives of S

For a subspace $S \subset \mathbb{F}_2^n$ and vectors $x \in co(S), z \in co(S^{\perp})$, define

$$|S_{x,z}\rangle = \frac{1}{\sqrt{|S|}} \sum_{s \in S} (-1)^{s \cdot z} |s + x\rangle$$
$$H^{\bigotimes n} \oint |S_{z,x}^{\perp}\rangle = \frac{1}{\sqrt{|S^{\perp}|}} \sum_{s \in S^{\perp}} (-1)^{s \cdot x} |s + z\rangle$$

Uncertainty principle: $\mathcal{A}(|S_{x,z}\rangle) \Rightarrow (s \in S + x, s' \in S^{\perp} + z)$ (if S, x, z are sufficiently random)

co(S): a set of coset representatives of S

For a subspace $S \subset \mathbb{F}_2^n$ and vectors $x \in co(S), z \in co(S^{\perp})$, define

$$|S_{x,z}\rangle = \frac{1}{\sqrt{|S|}} \sum_{s \in S} (-1)^{s \cdot z} |s + x\rangle \qquad \text{Use } x \text{ to hide the plaintext}$$
$$H^{\bigotimes n} \oint |S_{z,x}^{\perp}\rangle = \frac{1}{\sqrt{|S^{\perp}|}} \sum_{s \in S^{\perp}} (-1)^{s \cdot x} |s + z\rangle \qquad \text{Use } z \text{ as certificate of deletion}$$

Uncertainty principle: $\mathcal{A}(|S_{x,z}\rangle) \Rightarrow (s \in S + x, s' \in S^{\perp} + z)$ (if S, x, z are sufficiently random)

Notation

- C: cryptosystem with decryption key sk
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Notation

- C: cryptosystem with decryption key sk
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

EncCD(*b*):

- Sample $(S, x, z) \leftarrow D$
- Sample $h \leftarrow \mathcal{H}$
- Output $|S_{x,z}\rangle$, $C_{sk}(S,h)$, $b \oplus h(x)$

Notation

- C: cryptosystem with decryption key sk
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Decryption given *sk*:

- Use *sk* to learn *S* and *h*
- Measure $|S_{x,z}\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use h(x) to learn the plaintext b

EncCD(*b*):

- Sample $(S, x, z) \leftarrow D$
- Sample $h \leftarrow \mathcal{H}$
- Output $|S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$

Notation

- C: cryptosystem with decryption key sk
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Decryption given *sk*:

- Use *sk* to learn *S* and *h*
- Measure $|S_{x,z}\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use h(x) to learn the plaintext b

EncCD(*b*):

- Sample $(S, x, z) \leftarrow D$
- Sample $h \leftarrow \mathcal{H}$
- Output $|S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$

- Measure $|S_{\chi,Z}\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp} + z$

One-time pad Public-key encryption Commitment Timed-release encryption

Notation

- C:cryptosystem with decryption key sk
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Decryption given *sk*:

- Use sk to learn S and h
- Measure $|S_{x,z}\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use h(x) to learn the plaintext b

EncCD(*b*):

- Sample $(S, x, z) \leftarrow D$
- Sample $h \leftarrow \mathcal{H}$
- Output $|S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$

- Measure $|S_{\chi,Z}\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp} + z$

One-time pad Public-key encryption Commitment Timed-release encryption

Notation

- C:cryptosystem with decryption key sk
- \mathcal{H} : family of hash functions
- \mathcal{D} : a distribution over (S, x, z)

Randomness extractor with seed *h*

Decryption given *sk*:

- Use *sk* to learn *S* and *h*
- Measure $|S_{x,z}\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use h(x) to learn the plaintext b

EncCD(*b*):

- Sample $(S, x, z) \leftarrow D$
- Sample $h \leftarrow \mathcal{H}$
- Output $|S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$

- Measure $|S_{\chi,Z}\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp} + z$

• \mathcal{D} : a distribution over (S, x, z)

Randomness extractor with seed *h* Decryption given *sk*:

- Use *sk* to learn *S* and *h*
- Measure $|S_{x,z}\rangle$ in standard basis, and let x be the coset representative of the resulting vector
- Use h(x) to learn the plaintext b

EncCD(*b*):

- Sample $(S, x, z) \leftarrow D$
- Sample $h \leftarrow \mathcal{H}$
- Output $|S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$

- Measure $|S_{\chi,Z}\rangle$ in Hadamard basis to obtain a vector π
- Verification checks that $\pi \in S^{\perp} + z$

Practicality	

<u>Practicality</u>	Publicly-Verifiable Deletion	
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$		
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $		
No entanglement required		
[BI20]		

Optimize for...

Practicality	Publicly-Verifiable Deletion	
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n - 1$, so $S^{\perp} = \{0^n, \nu\}$	
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $		
No entanglement required		

[BI20]

Optimize for...

Practicality	Publicly-Verifiable Deletion	
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n - 1$, so $S^{\perp} = \{0^n, v\}$	
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $	$ \begin{array}{l} \mathrm{H}^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), \\ \mathcal{C}_{sk}(v), b \oplus x \end{array} $	
No entanglement required		

[BI20]

Optimize for...

Practicality	Publicly-Verifiable Deletion	
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n - 1$, so $S^{\perp} = \{0^n, v\}$	
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $	$ \begin{array}{l} \mathrm{H}^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), \\ \mathcal{C}_{sk}(v), b \oplus x \end{array} $	
No entanglement required	Only two valid deletion certificates, so publish OWF(z), OWF(z + v)	

[BI20]

Optimize for...

Practicality	Publicly-Verifiable Deletion
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n-1$, so $S^{\perp} = \{0^n, v\}$
$ \begin{array}{c} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} \end{array} $	$ \begin{array}{l} \mathrm{H}^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), \\ \mathcal{C}_{sk}(v), b \oplus x \end{array} $
No entanglement required	Only two valid deletion certificates, so publish OWF(z), OWF(z + v)

[BI20]

[**B**KMPW23]

Practicality	Publicly-Verifiable Deletion	Publicly-Verifiable Ciphertext
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n-1$, so $S^{\perp} = \{0^n, v\}$	
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $	$ \begin{array}{l} \mathrm{H}^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), \\ \mathcal{C}_{sk}(v), b \bigoplus x \end{array} $	
No entanglement required	Only two valid deletion certificates, so publish OWF(z), OWF(z + v)	
[BI20]	[B KMPW23]	

Practicality	Publicly-Verifiable Deletion	Publicly-Verifiable Ciphertext
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n - 1$, so $S^{\perp} = \{0^n, v\}$	S uniform over all subspaces
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $	$ H^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), C_{sk}(v), b ⊕ x $	
No entanglement required	Only two valid deletion certificates, so publish OWF(z), OWF(z + v)	
[BI20]	[B KMPW23]	

Practicality	Publicly-Verifiable Deletion	Publicly-Verifiable Ciphertext
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n - 1$, so $S^{\perp} = \{0^n, v\}$	S uniform over all subspaces
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \ldots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $	$ \begin{array}{l} \mathrm{H}^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), \\ \mathcal{C}_{sk}(v), b \oplus x \end{array} $	$ S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$
No entanglement required	Only two valid deletion certificates, so publish OWF(z), OWF(z + v)	
[BI20]	[B KMPW23]	

<u>Practicality</u>	Publicly-Verifiable Deletion	Publicly-Verifiable Ciphertext
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n-1$, so $S^{\perp} = \{0^n, v\}$	S uniform over all subspaces
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $	$ \begin{array}{l} \mathrm{H}^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), \\ \mathcal{C}_{sk}(v), b \oplus x \end{array} $	$ S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$
No entanglement required	Only two valid deletion certificates, so publish OWF(z), OWF(z + v)	Secure even given oracle access to $S + x$
[BI20]	[B KMPW23]	

<u>Practicality</u>	Publicly-Verifiable Deletion	Publicly-Verifiable Ciphertext
S spanned by standard basis vectors (Wiesner/BB84 states): $\theta \leftarrow \{0,1\}^n, S = \text{span}\{e_i\}_{i:\theta_i=1}$	S has dimension $n-1$, so $S^{\perp} = \{0^n, v\}$	<i>S</i> uniform over all subspaces
$ \begin{array}{l} \mathrm{H}^{\theta_{1}} x_{1}\rangle, \dots, \mathrm{H}^{\theta_{n}} x_{n}\rangle, \\ \mathcal{C}_{sk}(\theta, h), b \bigoplus h(\{x_{i}\}_{i:\theta_{i}=0}) \end{array} $	$ \begin{array}{l} \mathrm{H}^{\otimes n}(z\rangle + (-1)^{x} z+v\rangle), \\ \mathcal{C}_{sk}(v), b \oplus x \end{array} $	$ S_{x,z}\rangle$, $\mathcal{C}_{sk}(S,h)$, $b \oplus h(x)$
No entanglement required	Only two valid deletion certificates, so publish OWF(z), OWF(z + v)	Secure even given oracle access to $S + x$
[BI20]	[B KMPW23]	[B GGKMRR23]

Outline

- 1. Basic scenario and applications
- 2. Recipe for constructions
- 3. Security
- 4. Certifiable deletion of programs

 $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$
- If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(\operatorname{st}, sk)$

 $\mathrm{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$
- If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(\operatorname{st}, sk)$

Want: $|\Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(0) = 1] - \Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(1) = 1]| = negl$

 $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$

History

• If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(\operatorname{st}, sk)$

Want: $|\Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(0) = 1] - \Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(1) = 1]| = negl$

 $\mathrm{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$
- If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(\operatorname{st}, sk)$

```
Want: |\Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(0) = 1] - \Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(1) = 1]| = negl
```

- [Broadbent, Islam 20]:
 - \mathcal{C} one-time pad
 - \mathcal{H} good randomness extractor
 - \mathcal{D} Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ unbounded

 $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$
- If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(\operatorname{st}, sk)$

Want: $|\Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(0) = 1] - \Pr[CDExp_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(1) = 1]| = negl$

- [Broadbent, Islam 20]:
 - \mathcal{C} one-time pad
 - \mathcal{H} good randomness extractor
 - D Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
 - \mathcal{C} non-committing encryption scheme
 - \mathcal{H} good randomness extractor
 - \mathcal{D} Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ computationally bounded

 $\mathrm{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$
- If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(\text{st}, sk)$

Want: $\left| \Pr \left[\operatorname{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_{1},\mathcal{A}_{2}}(0) = 1 \right] - \right|$ $\Pr\left[\operatorname{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_{1},\mathcal{A}_{2}}(1)=1\right] = \operatorname{negl}$

- [Broadbent, Islam 20]:
 - \mathcal{C} one-time pad
 - \mathcal{H} good randomness extractor
 - D Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
 - \mathcal{C} non-committing encryption scheme
 - \mathcal{H} good randomness extractor
 - \mathcal{D} Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ computationally bounded

- [**B**, Khurana 23]:
 - \mathcal{C} semantically-secure distribution
 - *H*=⊕
 - \mathcal{D} Wiesner states
 - \mathcal{A}_1 computationally bounded, \mathcal{A}_2 unbounded

 $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$
- If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(st, sk)$

Want: $\left| \Pr \left[\operatorname{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_{1},\mathcal{A}_{2}}(0) = 1 \right] - \right|$ $\Pr\left[\operatorname{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_{1},\mathcal{A}_{2}}(1)=1\right] = \operatorname{negl}$

- [Broadbent, Islam 20]:
 - \mathcal{C} one-time pad
 - \mathcal{H} good randomness extractor
 - D Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
 - \mathcal{C} non-committing encryption scheme
 - \mathcal{H} good randomness extractor
 - \mathcal{D} Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ computationally bounded

- [**B**, Khurana 23]:
 - \mathcal{C} semantically-secure distribution
 - *H*=⊕
 - \mathcal{D} Wiesner states
 - \mathcal{A}_1 computationally bounded, \mathcal{A}_2 unbounded
- [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
 - \mathcal{C} subspace-hiding distribution
 - *H*=⊕
 - *D* subspace states
 - \mathcal{A}_1 computationally bounded, \mathcal{A}_2 unbounded

 $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}(b)$

- Sample $(S, x, z) \leftarrow D, h \leftarrow H$, and sk
- $\mathcal{A}_1(|S_{x,z}\rangle, \mathcal{C}_{sk}(S,h), b \oplus h(x)) \to \pi, \text{st}$
- If $\pi \notin S^{\perp} + z$, output $b' \leftarrow \{0,1\}$

• Otherwise, output $b' \leftarrow \mathcal{A}_2(st, sk)$

Want:
$$\left| \Pr \left[\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_{1},\mathcal{A}_{2}}(0) = 1 \right] - \Pr \left[\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_{1},\mathcal{A}_{2}}(1) = 1 \right] \right| = \text{negl}$$

Note: [Unruh 13] showed similar statement for a slightly different template supporting *quantum* certificates of deletion

History

- [Broadbent, Islam 20]:
 - \mathcal{C} one-time pad
 - \mathcal{H} good randomness extractor
 - D Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ unbounded
- [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
 - \mathcal{C} non-committing encryption scheme
 - \mathcal{H} good randomness extractor
 - \mathcal{D} Wiesner states
 - $(\mathcal{A}_1, \mathcal{A}_2)$ computationally bounded

- [**B**, Khurana 23]:
 - \mathcal{C} semantically-secure distribution
 - *H*=⊕
 - \mathcal{D} Wiesner states
 - \mathcal{A}_1 computationally bounded, \mathcal{A}_2 unbounded
- [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
 - \mathcal{C} subspace-hiding distribution
 - *H*=⊕
 - *D* subspace states
 - \mathcal{A}_1 computationally bounded, \mathcal{A}_2 unbounded
- Let \mathcal{C} be a computationally-hiding statistically-binding commitment
- Let $\mathcal{H} = \bigoplus$ (unseeded)
- Let \mathcal{D} sample a uniformly random (S, x, z)
- Let \mathcal{A}_1 be computationally bounded and \mathcal{A}_2 be unbounded

- Let ${\mathcal C}$ be a computationally-hiding statistically-binding commitment
- Let $\mathcal{H} = \bigoplus$ (unseeded)
- Let \mathcal{D} sample a uniformly random (S, x, z)
- Let \mathcal{A}_1 be computationally bounded and \mathcal{A}_2 be unbounded

- Let ${\mathcal C}$ be a computationally-hiding statistically-binding commitment
- Let $\mathcal{H} = \bigoplus$ (unseeded)
- Let \mathcal{D} sample a uniformly random (S, x, z)
- Let \mathcal{A}_1 be computationally bounded and \mathcal{A}_2 be unbounded

Goal: Show that $TD(Hyb_0(0), Hyb_0(1)) = negl$

Hybrid 1: Delay the dependence of the experiment on \boldsymbol{b}

Hybrid 1: Delay the dependence of the experiment on \boldsymbol{b}

 $TD(Hyb_1(0), Hyb_1(1)) = \frac{1}{2}TD(Hyb_0(0), Hyb_0(1))$

Hybrid 1: Delay the dependence of the experiment on \boldsymbol{b}

 $TD(Hyb_1(0), Hyb_1(1)) = \frac{1}{2}TD(Hyb_0(0), Hyb_0(1))$

Want to show: If $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S))$ outputs $\pi \in S^{\perp} + z$, then x has a lot of conditional min-entropy

Want to show: If $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S))$ outputs $\pi \in S^{\perp} + z$, then x has a lot of conditional min-entropy

 $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$

Example Proof $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$ $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$ $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$ $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$ Example Proof $\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$ $\int_{x \in \operatorname{co}(S)} |x\rangle \qquad \mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$

Want to show: If
$$\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S))$$
 outputs $\pi \in S^{\perp} + z$,
then x has a lot of conditional min-entropy
 $\Rightarrow \pi$
 $\Rightarrow \pi$
For $x \in \operatorname{co}(S)$: $U_S | x \rangle \rightarrow \sum_{v \in S^{\perp}} (-1)^{v \cdot x} | v \rangle$
For $v \in S^{\perp}$: $U_S^{\dagger} | v \rangle \rightarrow \sum_{x \in \operatorname{co}(S)} (-1)^{v \cdot x} | x \rangle$

show: If
$$\mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S))$$
 outputs $\pi \in S^{\perp} + z$,
then x has a lot of conditional min-entropy
For $x \in \operatorname{co}(S)$: $U_S|x\rangle \to \sum_{v \in V} (-1)^{v \cdot x} |v\rangle$

For
$$x \in co(S)$$
: $U_S | x \rangle \rightarrow \sum_{v \in S^{\perp}} (-1)^{v \cdot x} | v \rangle$
For $v \in S^{\perp}$: $U_S^{\dagger} | v \rangle \rightarrow \sum_{x \in co(S)} (-1)^{v \cdot x} | x \rangle$

Claim: if \mathcal{A} given random v + z and outputs $\pi \in S^{\perp} + z$, then $\pi = v + z$ with overwhelming probability (over S, z)

Want to show: If $\mathcal{A}(|S_{\chi,z}\rangle, \operatorname{Com}(S))$ outputs $\pi \in S^{\perp} + z$, Example Proof then x has a lot of conditional min-entropy $\mathcal{A}(|S_{\chi,Z}\rangle, \operatorname{Com}(S)) \to \pi$ $\sum_{z \in co(S)} |x\rangle \qquad \mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$ For $x \in co(S)$: $U_S | x \rangle \to \sum_{v \in S^{\perp}} (-1)^{v \cdot x} | v \rangle$ $x \in co(S) \bigcup U_S$ For $v \in S^{\perp}$: $U_S^{\dagger} | v \rangle \rightarrow \sum_{x \in co(S)} (-1)^{v \cdot x} | x \rangle$ $\mathcal{A}(\mathrm{H}^{\otimes n}|v+z\rangle,\mathrm{Com}(S)) \to \pi$ $v \in S^{\perp}$ | Project Claim: if \mathcal{A} given random v + z and outputs $\pi \in S^{\perp} + z$, then $\pi = v + z$ with overwhelming probability (over *S*, *z*)

Want to show: If $\mathcal{A}(|S_{\chi,z}\rangle, \operatorname{Com}(S))$ outputs $\pi \in S^{\perp} + z$, Example Proof then x has a lot of conditional min-entropy $\mathcal{A}(|S_{\chi,Z}\rangle, \operatorname{Com}(S)) \to \pi$ $\sum_{\varepsilon \in co(S)} |x\rangle \qquad \mathcal{A}(|S_{x,z}\rangle, \operatorname{Com}(S)) \to \pi$ For $x \in co(S)$: $U_S | x \rangle \rightarrow \sum_{v \in S^{\perp}} (-1)^{v \cdot x} | v \rangle$ $x \in \operatorname{co}(S) \bigcup \operatorname{U}_{S}$ For $v \in S^{\perp}$: $U_S^{\dagger} | v \rangle \rightarrow \sum_{v \in S^{\perp}} (-1)^{v \cdot x} | x \rangle$ $\sum |v\rangle \qquad \mathcal{A}(\mathrm{H}^{\otimes n}|v+z\rangle, \mathrm{Com}(S)) \to \pi$ $v \in S^{\perp}$ | Project Claim: if \mathcal{A} given random v + z and outputs $\pi \in S^{\perp} + z$, then $\pi = v + z$ with overwhelming probability (over *S*, *z*) $\sum (-1)^{(\pi-z)\cdot x} |x\rangle$ $x \in co(S)$

Want to show: If $\mathcal{A}(|S_{\chi,z}\rangle, \operatorname{Com}(S))$ outputs $\pi \in S^{\perp} + z$, Example Proof then x has a lot of conditional min-entropy $\sum_{x \in co(S)} |x\rangle \qquad \mathcal{A}(|S_{x,z}\rangle, Com(S)) \to \pi$ $\mathcal{A}(|S_{\chi,Z}\rangle, \operatorname{Com}(S)) \to \pi$ $\left(\text{For } x \in \text{co}(S) \colon U_S | x \right) \to \sum_{v \in S^{\perp}} (-1)^{v \cdot x} | v \right)$ For $v \in S^{\perp}$: $U_S^{\dagger} | v \rangle \rightarrow \sum_{v \in S^{-1}} (-1)^{v \cdot x} | x \rangle$ $\sum_{v \in \mathcal{A}} |v\rangle \qquad \mathcal{A}(\mathrm{H}^{\otimes n}|v+z\rangle, \mathrm{Com}(S)) \to \pi$ $v \in S^{\perp}$ | Project Claim: if \mathcal{A} given random v + z and outputs $\pi \in S^{\perp} + z$, $|\pi - z\rangle$ then $\pi = v + z$ with overwhelming probability (over *S*, *z*) $\sum_{x \in \mathcal{X}} (-1)^{(\pi-z) \cdot x} |x\rangle$ Measuring gives a uniformly random $x \in co(S)$, independent of \mathcal{A} 's view $x \in co(S)$

Outline

- 1. Basic scenario and applications
- 2. Recipe for constructions
- 3. Security
- 4. Certifiable deletion of programs

- (Indistinguishability) obfuscation with certified deletion
- Applications
- Comparison with other notions

Rough goal:

Rough goal:

• Encode a program *f* into a deletable quantum state

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: [**B**GGKMRR23] $|S_{x,z}\rangle$, CObf(P[S, f $\oplus x$])

- $P[S, \tilde{f}](y, v):$
- Let x be the coset of S that v belongs to
- Let $f = \tilde{f} \oplus x$
- Output f(y)

A "one-way" compiler that scrambles the description of a circuit while maintaining its functionality

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: [**B**GGKMRR23] $|S_{x,z}\rangle$, CObf(P[S, $f \oplus x$])

- $P[S, \tilde{f}](y, v):$
- Let x be the coset of S that v belongs to
- Let $f = \tilde{f} \oplus x$
- Output f(y)

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: [**B**GGKMRR23] $|S_{x,z}\rangle$, CObf(P[S, f $\oplus x$])

 $P[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f = \tilde{f} \oplus x$
- Output f(y)

Correctness: Given any input y, evaluate $Obf(P[S, f \oplus x])$ on y and in superposition over S + x to learn f(y)

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: [**B**GGKMRR23] $|S_{x,z}\rangle$, CObf(P[S, f $\oplus x$])

 $P[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f = \tilde{f} \oplus x$
- Output f(y)

Issue with security:

By querying on different $v \notin S + x$, can potentially learn evaluations of functions whose description is related to f

Rough goal:

- Encode a program *f* into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: [**B**GGKMRR23] $|S_{x,z}\rangle$, CObf(P[S, f $\oplus x$])

 $P[S, \tilde{f}](y, v):$

- Let x be the coset of S that v belongs to
- Let $f = \tilde{f} \oplus x$
- Output f(y)

Solution: P should only accept *authentic* vectors v derived from the state $|S_{x,z}\rangle$

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: [**B**GGKMRR23] $|S_{x,z}\rangle$, CObf(P[S, T, u, f $\oplus x$])

- $P[S,T,u,\tilde{f}](y,v):$
- Abort if $v \notin T + u$
- Let x be the coset of S that v belongs to

• Let
$$f = \tilde{f} \oplus x$$

• Output f(y)

Solution:

P should only accept *authentic* vectors v derived from the state $|S_{x,z}\rangle$ Define authentic vectors via a random superspace $T + u \supset S + x$

Rough goal:

- Encode a program f into a deletable quantum state
- Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: [**B**GGKMRR23] $|S_{x,z}\rangle$, CObf(P[S, T, u, f $\oplus x$])

- $P[S,T,u,\tilde{f}](y,v):$
- Abort if $v \notin T + u$
- Let x be the coset of S that v belongs to
- Let $f = \tilde{f} \oplus x$
- Output f(y)

Solution:

P should only accept *authentic* vectors v derived from the state $|S_{x,z}\rangle$ Define authentic vectors via a random superspace $T + u \supset S + x$ Hard for the adversary to query on any authentic vector not in S + x

If CObf is modeled as a classical oracle:

- Before deletion, evaluator can use the oracle to learn f(y) for any y of their choice
- After deletion (outputting $v \in S^{\perp} + z$), the evaluator cannot learn anything else from the oracle even given unbounded queries

Candidate construction: [**B**GGKMRR23]

$$|S_{x,z}\rangle$$
, CObf(P[S, T, u, f $\oplus x$])

- $P[S,T,u,\tilde{f}](y,v):$
- Abort if $v \notin T + u$
- Let x be the coset of S that v belongs to

• Let
$$f = \tilde{f} \oplus x$$

• Output f(y)

Solution:

P should only accept *authentic* vectors v derived from the state $|S_{x,z}\rangle$ Define authentic vectors via a random superspace $T + u \supset S + x$ Hard for the adversary to query on any authentic vector not in S + x

Indistinguishability obfuscation

Indistinguishability obfuscation

• For any two functionally equivalent circuits $C_0, C_1, Obf(C_0) \approx_c Obf(C_1)$

Indistinguishability obfuscation with certified deletion

For any two functionally equivalent circuits C₀, C₁, Obf(C₀) ≈_c Obf(C₁), and after deletion Obf(C₀) ≈_s Obf(C₁)

Indistinguishability obfuscation with certified deletion

For any two functionally equivalent circuits C₀, C₁, Obf(C₀) ≈_c Obf(C₁), and after deletion Obf(C₀) ≈_s Obf(C₁)

Satisfied by a slightly modified construction
Without Oracles...

Indistinguishability obfuscation with certified deletion

For any two functionally equivalent circuits C₀, C₁, Obf(C₀) ≈_c Obf(C₁), and after deletion Obf(C₀) ≈_s Obf(C₁)

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (*differing inputs*) iO with CD are useful tools:

Without Oracles...

Indistinguishability obfuscation with certified deletion

For any two functionally equivalent circuits C₀, C₁, Obf(C₀) ≈_c Obf(C₁), and after deletion Obf(C₀) ≈_s Obf(C₁)

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (*differing inputs*) iO with CD are useful tools:

• Two-message delegation with certified deletion

Without Oracles...

Indistinguishability obfuscation with certified deletion

For any two functionally equivalent circuits C₀, C₁, Obf(C₀) ≈_c Obf(C₁), and after deletion Obf(C₀) ≈_s Obf(C₁)

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (*differing inputs*) iO with CD are useful tools:

- Two-message delegation with certified deletion
- A generic compiler from encryption to encryption with *revocable secret keys*

- Gen → pk, vk, |sk>
 Enc(pk, m) → ct
 Dec(|sk>, ct) → m
- $Del(|sk\rangle) \rightarrow cert$ $Ver(vk, cert) \rightarrow \top/\bot$

- Gen \rightarrow pk, vk, $|sk\rangle$ Enc(pk, m) \rightarrow ct
- $Dec(|sk\rangle, ct) \rightarrow m$
- Del($|sk\rangle$) \rightarrow cert Ver(vk, cert) $\rightarrow \top/\bot$

Deletion security: ciphertexts generated after successful deletion of $|sk\rangle$ are semantically secure

- Gen \rightarrow pk, vk, $|sk\rangle$ Enc(pk, m) \rightarrow ct
- $Dec(|sk\rangle, ct) \rightarrow m$
- $Del(|sk\rangle) \rightarrow cert$ $Ver(vk, cert) \rightarrow \top/\bot$

Deletion security: ciphertexts generated after successful deletion of $|sk\rangle$ are semantically secure

Simple compiler: $|sk\rangle = iOCD(Dec(sk, \cdot))$ [**B**GGMKRR23]

- Gen → pk, vk, |sk>
 Enc(pk, m) → ct
 Dec(|sk>, ct) → m
- $Del(|sk\rangle) \rightarrow cert$ $Ver(vk, cert) \rightarrow T/\bot$

Deletion security: ciphertexts generated after successful deletion of $|sk\rangle$ are semantically secure

Simple compiler: $|sk\rangle = iOCD(Dec(sk, \cdot))$ [**B**GGMKRR23]

Gives *publicly-verifiable revocation* if iOCD is publicly verifiable

- Gen → pk, vk, |sk>
 Enc(pk, m) → ct
 Dec(|sk>, ct) → m
- $Del(|sk\rangle) \rightarrow cert$ $Ver(vk, cert) \rightarrow \top/\bot$

Deletion security: ciphertexts generated after successful deletion of |sk) are semantically secure

Simple compiler: $|sk\rangle = iOCD(Dec(sk, \cdot))$ [**B**GGMKRR23]

Gives *publicly-verifiable revocation* if iOCD is publicly verifiable

Privately-verifiable revocation from standard assumptions: [Kitagawa, Nishimaki 22], [Agarwal, Kitagawa, Nishimaki, Yamada, Yamakawa 23], [Ananth, Poremba, Vaikuntanathan 23]

Hard for the adversary to produce...

privately verifiable

Hard for the adversary to produce...

privately verifiable

Hard for the adversary to produce...

Hard for the adversary to produce...

요 certificate derived from program

publicly verifiable

privately verifiable

• Prove the security of $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}$ when

- Prove the security of $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}$ when
 - Encoding super-logarithmic bits per subspace state

- Prove the security of $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}$ when
 - Encoding super-logarithmic bits per subspace state
 - ${\mathcal C}$ is any semantically-secure distribution and ${\mathcal H}$ is a good seeded randomness extractor

- Prove the security of $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}$ when
 - Encoding super-logarithmic bits per subspace state
 - ${\mathcal C}$ is any semantically-secure distribution and ${\mathcal H}$ is a good seeded randomness extractor
- Robustness to noise (beyond one-time pad [BI20])

- Prove the security of $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}$ when
 - Encoding super-logarithmic bits per subspace state
 - ${\mathcal C}$ is any semantically-secure distribution and ${\mathcal H}$ is a good seeded randomness extractor
- Robustness to noise (beyond one-time pad [BI20])
- Publicly-verifiable revocation/deletion without post-quantum iO

- Prove the security of $\text{CDExp}_{\mathcal{C},\mathcal{H},\mathcal{D},\mathcal{A}_1,\mathcal{A}_2}$ when
 - Encoding super-logarithmic bits per subspace state
 - ${\mathcal C}$ is any semantically-secure distribution and ${\mathcal H}$ is a good seeded randomness extractor
- Robustness to noise (beyond one-time pad [BI20])
- Publicly-verifiable revocation/deletion without post-quantum iO
- More rigorous understanding of the relationship between unclonable primitives from previous slide ([Ananth, Kaleoglu, Liu 23])