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Introduction
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Prepare-and-measure: BB84, B92, six-state, …
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Entanglement-distribution-based: Ekert91, 
BBM92, …
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Entanglement-measurement-based
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Lo-Chau security proof: BBM92
 Entanglement distillation

 Distill perfect EPR pairs from imperfect ones

 Bell basis: | ۧ00 ± | ۧ11 , | ۧ10 ± | ۧ01

 Objective: | ۧ00 + | ۧ11

 Bit errors (Z)
 | ۧ01 + | ۧ10

 Phase errors (X)
 | ۧ00 − | ۧ11

 Both bit and phase errors (Y)
 | ۧ01 − | ۧ10

Lo and Chau, Science 283, 2050 (1999)
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Security based on entanglement distillation
 Bit error correction (Z: 0,1)

 Bit errors: |01>+|10> and |01>-|10>

 After bit error correction: |00>+|11> or |00>-|11>

 Phase error correction (X: +,-)
 Phase errors: |00>-|11> or |01>-|10>

 After phase error correction: |00>+|11> or |01>+|10>

 Share (almost) pure EPR pairs: |00>+|11>

 Measure in Z basis to get final key
 Almost perfect privacy (randomness)

( 00 + |11ۧ)𝑛

෍

𝑘

𝑘𝑘 ⟨𝑘𝑘| ⊗ 𝜌𝐸

Secure key definition: 
Ben-Or, Horodecki, Leung, Mayers, and Oppenheim, TCC 2005
Renner and König, TCC 2005

Local Z measurement
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Source replacement
 Classical encoding ⇒ ancilla qubits + control-unitary

Key 

encoding

Phase 

encoding

Intensity 

encoding
Ferenczi and Lütkenhaus, Phys. Rev. A 85, 052310 (2012)

Intensity

Key

Phase

| +>

|+>𝑑

|+>3
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Classically replaceable unitary
 Classically replaceable operations (CRO)

 Similar to dephasing incoherent operation (DIO)

Liu, Zhang, and Ma Quantum 6, 845, (2022)

: measurement

: classical

: irreplaceable

: replaceable

𝑠𝑜3

𝑈𝑓2

𝑠𝑜2

𝑈𝑓1

𝑉𝑓

𝑠𝑜1

𝑠𝑜2

𝑈𝑓𝑐
𝑠𝑜3
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Shor-Preskill security proof
 Problem with the Lo-Chau proof

 Requires quantum computers

 Reduce to prepare-and-measure schemes
 Commuting operations in quantum mechanics

 Put the final key measurement ahead before error corrections

 Bit error correction becomes key reconciliation
 Enables Alice and Bob shares identical keys

 Phase error correction becomes privacy amplification
 Enables Alice and Bob shares private keys

Shor and Preskill, PRL 85, 441 (2000)

𝑅 = 1 − 𝐻 𝑒𝑏𝑖𝑡 −𝐻(𝑒𝑝ℎ𝑎𝑠𝑒)
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Gottesman-Lo-Lütkenhaus-Preskill 2004
 Two types of raw key bits

 Good ones: secure (e.g. single photon states)

 Bad ones: insecure (e.g. multi photon states)

 Tagging idea

 Raw key contains good key bits and bad key bits 

 Good key ⊕ Bad key = Good key

 Only need to know the amount of good key, and then “randomly” XOR all the 
key bits

 Privacy amplification can be only performed on good ones

𝑅 ≥ −𝑄𝜇ℎ 𝐸𝜇 + 𝑄1[1 − ℎ(𝑒1)]

Good

Bad
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Phase randomization vs. Fock state
 Input coherent state

 Phase randomization

key

Phase

𝜃

+ 𝑑

|+ۧ 𝐹†
Photon 

number

|𝛼ۧ
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Optic encoding
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Qubit encoding with photons
 Polarization encoding

 0 : horizontal; 1 : vertical; + : 45𝑜 diagonal; − : −45𝑜 diagonal;

 Essentially relative phase between two circular polarizations 

 Phase encoding

 Find any two orthogonal modes

 Time-bin

 Spectrum; space

 Find a qubit subspace

 Encoding and detection

State Polarization Relative phase

0 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 0

1 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝜋

+
0 + 1

45𝑜

diagonal

𝜋

2

−
0 − 1

−45𝑜

diagonal

3𝜋

2
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Optical modes
0,1,2,… 𝑠 ⊗ 0,1,2,… 𝑟

 For quantum cryptography, we often assume the modes are orthogonal

 Photons in orthogonal modes are perfectly distinguishable

 Qubit subspace of a single photon state
0 𝑠 1 𝑟 +𝑒

𝑖𝜃 1 𝑠 0 𝑟

 In practice: coherent state

𝛼 = 𝑒 𝛼 2/2 ෍

𝑘=0

𝛼𝑘

𝑘!
|𝑘ۧ

 Here 𝛼 is a complex number, we can separate intensity 𝜇 and phase 𝜃

𝛼 = 𝜇𝑒𝑖𝜃
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Time-bin encoding
 Photon in mode r/s

 Advantage: low bit error rate

 Determined by the vacuum preparation

 Detection rate: 𝑂(𝜂), single-click

PM

Alice
ar

as PM

Delay

r s

Delay

BSBS

Bob

𝜃

𝜂
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Measurement-device-independent
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MDI-QKD
 Alice and Bob are symmetric

 Alice (same as Bob) randomly chooses bit {0,1} and 
basis {X, Z} and sends the state to an untrusted party, 
could be Eve

 Source is the same as BB84

 Eve projects the two qubits into one of four Bell 
states

 Bell state measurement (BSM)

 “Time-reversed” EPR distribution QKD (BBM92)

Lo, Curty, and Qi, PRL 108, 130503 (2012)
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Time-bin phase-encoding MDI-QKD
 Relative phase of two modes: {0,

𝜋

2
, 𝜋,

3𝜋

2
}

Tamaki, Lo, Fung, and Qi, PRA 85, 042307 
(2012)
Ma, Fung and Razavi, PRA 86, 052305 (2012)
Ma, and Razavi, PRA 86, 062319 (2012)
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Features of MDIQKD
 Measurement device independent

 The measurement devices are assumed to be held by an untrusted party

 Immune to all detection attacks

 Two quantum channels

 Like entanglement based protocol, the effects of background counts can be 
reduced

 Need coincident detection

𝑅 = 𝑂 𝜂

 Performance: same as the decoy-state QKD, under the linear bound
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Twin-field QKD
 Key rate of  𝑅 = 𝑂( 𝜂)!

 BB84 type encoding, 01 ± 10 , 01 ± 𝑖 10 as the X,Y basis

 Introduce the decoy state method

Lucamarini, Yuan, Dynes and Shields, Nature 557(7705): 400 (2018)
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𝜇𝑒𝑖 𝜙𝑎+𝜋𝜅𝑎
𝐴

𝜇𝑒𝑖 𝜙𝑏+𝜋𝜅𝑏
𝐵

Phase-matching (MDI) QKD
 Extension of “MDI-B92” protocol

 Detection matches the phases: Eve’s detection create a correlation 
between 𝜅𝑎, 𝜅𝑏

Ferenczi, Chapter 7, Ph.D. thesis (2013)
Ma, Zeng and Zhou, PRX.8.031043, (2018)
Lin and Lütkenhaus, PRA, 98(4), 042332, 
(2018)
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Key rate
 Phase announcement is critical, and does not commute with photon 

number measurement

 Photon number channel model invalid: collective BS attacks

 Key observation: even parity state = phase error

𝑅 = 𝑄𝜇 1 − 𝐻 𝐸𝜇
𝑍 −𝐻 𝑞𝑒𝑣𝑒𝑛

 𝑄𝜇 = σ𝑘 𝑝𝑘𝑌𝑘 = 𝑂( 𝜂)

 𝑞𝑒𝑣𝑒𝑛 = 1 − σ𝑘 𝑞2𝑘+1 ≤ 1 − 𝑞1

 𝑞𝑘 =
𝑝𝑘𝑌𝑘

𝑄𝜇
; 𝐸𝜇

𝑍 = σ𝑘 𝑞𝑘𝑒𝑘
𝑍

𝑅 = 𝑂( 𝜂)

Maeda, Sasaki, and Koashi, Nat. Comm. 
10, 3140 (2019)
Zeng, Wu, and Ma, Phys. Rev. Applied 
13, 064013, (2020)
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Experimental realizations

USTC Han’s group
PRX 9, 021046 (2019)

Toshiba group
Nat. Photon. 13, 334–338 (2019)

USTC Pan’s group: PRL 123, 100505 (2019) Toronto Lo’s group: PRL 123, 100506 (2019)
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100~500 𝑘𝑚!

Challenges in experiment
• Core issue: a long-arm single-photon interferometer

• Phase stabilization: major challenge

 Δ𝜙0: fluctuation of the initial phase

 Long coherence time >> pulse interval time

 Δ𝜐: deviation and fluctuation of laser frequencies

 Cannot be larger than 1kHz

 Δ𝐿: drift of fiber optical length

 Cannot be longer than 200 nm

𝛿𝑏𝑎 = 𝜙𝑏 𝑡 − 𝜙𝑎 𝑡 = Δ𝜙0 +
2𝜋

𝑠
𝐿Δ𝜐 +

2𝜋

𝑠
𝜐Δ𝐿
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Exp implementation
 Laser injection + phase post-selection

USTC group: Fang et al. Nat. Photon. 14, 
422-425, (2020)
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Extreme experimental distance

Wang et al., Nature Photonics 16, 154–161 (2022)
833 km

Liu et al., PRL 130, 210801 (2023)
Over 1000 km
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Mode-pairing scheme
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Trade-off in practicality and performance
 Key challenge in phase-matching scheme: global phase locking

 Independent lasers

 Quadratic key improvement

 Time-bin encoding MDI-QKD

 Relative phase is easy to stabilize

 Key rate linearly depends on transmittance 

 Can we have both advantages?

 Yes! With mode-pairing scheme

Zeng, Zhou, Wu, Ma, Nat. Comm. 13, no. 1, 3903, (2022)
Discussions with Norbert Lutkenhaus
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Time-bin MDIQKD
 Two orthogonal optical modes

 Space -> time

 Robust against phase fluctuation

Ma and Razavi, PRA 86, 062319 (2012)
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Mode-pairing scheme
 Schematic setup

 Key bits are determined after Charlie announces detection results

 Alice and Bob pairs the successfully clicks
Zeng, Zhou, Wu, Ma, Nat. Comm. 13, no. 1, 3903, (2022)
Discussions with Norbert Lutkenhaus 33



Quadratically key rate improvement
 Performance: 𝑅 = 𝑂 𝜂

34



Other security analysis

Wang, Yin, et al., arXiv:2302.13481 (2023)
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Experimental implementation
 USTC group

Zhu, Huang, et al., PRL 130, 030801, (2023)
Another demo: Zhou, Lin, Xie, et al., PRL 130, 250801, (2023)
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Features of mode-pairing scheme
 Optimal intensity is higher

 Higher key rate comparing to the phase-matching scheme

 Sifting factor is worse

 Suffer from large statistical fluctuation

 Key bit and basis value are determined in postprocessing

 Challenge for security proof
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Development of QKD
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Open questions: better pairing strategy
 Statistical fluctuation on X-basis data is bad

 Check out a few clicks to determine better pairing

 Current simple scheme: pair two adjacent clicks

 Depending on some phases and intensities

 Do not expose key information

 Separate key generation and test bits

 Better sifting factor

 Regular MDIQKD + mode-pairing
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Open questions
 Beyond time-bin mode

 Paring among different degrees of freedom: frequency, spatial, orbital angular 
momentum

 How to encode phases efficiently

 Coherent detection

 High-dimensional / continuous-variable

 Add more (untrusted) nodes: 𝑅 > 𝑂 𝜂 ?

 Further enhance the performance

 Practical repeaters
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Conclusion and outlook
 Measurement-device-independent property

 Quadratic key rate
𝑅 = 𝑂( 𝜂)

 Feasible implementation
 Remove the global phase-locking requirement!

 Further enhance implementation security
 Reduce the theoretical assumptions on the sources

 Higher performance
 High-dimensional/CV encoding

 Add quantum nodes in the channel

Cheap, 
high security-level, 
high performance
QKD / Quantum 
Internet
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Thank you!
 Welcome to visit!
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