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Cryptography in a quantum world
Post-Quantum 

Crypto

Classical crypto primitives secure
against quantum computers

Computationally-Secure
Fully Quantum Crypto

Public-key Quantum Money

Quantum Copy Protection

Pseudorandom States/Unitaries

Certified Deletion

Information-Theoretic 
Fully Quantum Crypto

BB84 protocol: unconditionally-
secure key distribution, using 
quantum communication.

Device-independent protocols



• Efficiently-computable quantum states that look Haar-random to an 
outside observer. [Ji, Liu, Song 2018]

• Applications: 
• Quantum cryptography

• Quantum machine learning

• Quantum complexity theory

• Quantum gravity

Pseudorandom quantum states (PRS)
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A quantum analogue of pseudorandom generators

Pseudorandom Generator

𝐺𝜆-bit 
seed

𝑛-bit 
output

Deterministic
poly-time function

No poly-time algorithm can distinguish 
output of 𝐺 from 𝑛 uniformly random bits 
(even though 𝑛 > 𝜆).

Pseudorandom State Generator

𝐺𝜆-bit 
seed

𝑛-qubit 
output

Quantum
poly-time algorithm

No poly-time algorithm can distinguish 
(copies of) output of 𝐺 from (copies of) 
an 𝑛-qubit state sampled from the 
Haar distribution.



Haar-random quantum states

𝑛-qubit (pure) state is unit vector 𝜓 ∈ ℂ2
𝑛

.

Intuitively, Haar distribution is uniform distribution over 
quantum states.

𝜓

Haar distribution is unitarily invariant: If 𝜓 is Haar-random, then for any 𝑛-qubit 
unitary matrix 𝑈 so is 𝑈|𝜓⟩.

A random 𝑛-bit string can be sampled efficiently. 
A Haar-random 𝑛-qubit state cannot.



Pseudorandom quantum states

A quantum poly-time algorithm 𝐺 is a pseudorandom state (PRS) generator if 

- given key 𝑘 ∈ 0,1 𝜆, 𝐺(𝑘) outputs 𝑛-qubit state |𝜓𝑘⟩

- for all 𝑡, for all poly(𝜆)-time algorithms 𝐷 (called a distinguisher),

𝐷 𝜓𝑘
⊗𝑡 ≈ 𝐷 𝜗 ⊗𝑡𝜓𝑘 = 𝐺(𝑘) for 

random 𝑘 ∈ 0,1 𝜆
𝜗 is Haar-random



Pseudorandom quantum states

A quantum poly-time algorithm 𝐺 is a pseudorandom state (PRS) generator if 

- given key 𝑘 ∈ 0,1 𝜆, 𝐺(𝑘) outputs 𝑛-qubit state |𝜓𝑘⟩
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random 𝑘 ∈ 0,1 𝜆
𝜗 is Haar-random

Quantum states cannot be copied (no-cloning theorem). 
So having 𝑡 + 1 copies is different from having 𝑡 copies. 



Pseudorandom quantum states

A quantum poly-time algorithm 𝐺 is a pseudorandom state (PRS) generator if 

- given key 𝑘 ∈ 0,1 𝜆, 𝐺(𝑘) outputs 𝑛-qubit state |𝜓𝑘⟩

- for all 𝑡, for all poly(𝜆)-time algorithms 𝐷 (called a distinguisher),

𝐷 𝜓𝑘
⊗𝑡 ≈ 𝐷 𝜗 ⊗𝑡𝜓𝑘 = 𝐺(𝑘) for 

random 𝑘 ∈ 0,1 𝜆
𝜗 is Haar-random

A PRS generator is different from a state 𝑡-design, 
where indistinguishability only holds for some fixed 𝑡.
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Pseudorandom states from pseudorandom 
functions
Let 𝐹𝑘: 0,1

𝑛 → 0,1
𝑘

be a (post-quantum) pseudorandom function (PRF) 

family. 

This means for all poly-time (quantum) distinguishers 𝐷

𝐷𝐹𝑘 ≈ 𝐷𝐻

where 𝑘 is uniformly random and 𝐻: 0,1 𝑛 → 0,1 is a random function.

Theorem [Zhandry ‘12]: Post-quantum PRFs exist iff post-quantum one-way 
functions (OWFs) exist.



Pseudorandom states from pseudorandom 
functions
Fix post-quantum PRF family 𝐹𝑘: 0,1

𝑛 → 0,1
𝑘

. 

Ji, Liu and Song proposed* the binary phase PRS:

𝜓𝑘 = 2−𝑛/2 ෍

𝑥∈ 0,1 𝑛

−1 𝐹𝑘(𝑥) |𝑥⟩

*Binary phase PRS analyzed by [Brakerski, Shmueli ‘21] [Ananth, Gulati, Qian, Y. ‘22]

Clearly efficiently computable! What about pseudorandomness?



Pseudorandom states from pseudorandom 
functions
Analysis: 

By pseudorandomness of PRF 𝐹𝑘 𝑘, we have

𝜓𝑘
⊗𝑡 ≈𝑐 2

−𝑛𝑡/2 ෍

𝑥1,…,𝑥𝑡∈ 0,1 𝑛

𝛼𝑥1 ⋯𝛼𝑥𝑡 |𝑥1, … , 𝑥𝑡⟩

where for each 𝑥 ∈ 0,1 𝑛, the constant 𝛼𝑥 is a uniformly random ±1 value, and 
“≈𝑐” means “computationally indistinguishable”.

Then, show that random binary phase states are statistically indistinguishable
from Haar-random states.



A candidate PRS generator

The generator 𝐺 interprets key 𝑘 as description of quantum circuit 𝐶𝑘, and outputs 
the state 𝐶𝑘|0⋯0⟩. 

𝐺𝑘 = 𝐶𝑘|0⋯0⟩

The output of 𝐺 is output of a random poly-sized quantum circuit. 

It is conjectured in physics and quantum information that random quantum circuits 
are chaotic, structureless, and hard to predict…(related to quantum supremacy 
and black holes). Reasonable to conjecture it gives rise to PRS. 
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PRS are computational

• Given exponential time it is possible to distinguish between PRS and Haar
distribution: 
• The span of 𝜓𝑘

⊗𝑡 has dimension 2𝜆

• The span of 𝜗 ⊗𝑡 for all |𝜗⟩ has dimension 2𝑛+𝑡−1
𝑡

• For sufficiently large 𝑡 = 𝑝𝑜𝑙𝑦 𝑛, 𝜆 ,  2𝑛+𝑡−1
𝑡

≫ 2𝜆

• By measuring the projection onto 𝑃, can distinguish between Haar random 
and output of PRS with high probability.

• Thus we need some computational assumptions on the distinguisher!



PRG vs PRS

Pseudorandom Generator Pseudorandom State Generator

Extremely useful in classical cryptography. Not obvious how to use PRS for crypto.

Equivalent to OWFs. PRS do not generically imply OWFs.

PRG that stretches 𝜆 → 𝜆 + 1 bits implies
PRG that stretches 𝜆 → 𝑛 bits for any 
𝑛 = poly 𝜆 .

Unclear how to stretch output 
length of PRS generator.

Truncating output of PRG still yields PRG.
PRS are highly entangled, so cannot be 
truncated.

Can copy outputs of PRG. Cannot copy PRS.

Pseudorandom states are brittle!
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Applications of classical PRGs

OWFs

PRGs

PRFs

MiniCrypt Primitives:
- Private-key encryption
- Commitments
- Digital signatures
- Zero knowledge proofs

Question: What cryptographic primitives can be constructed directly from PRS?

Classical crypto 101: PRGs are equivalent to many fundamental primitives.

Equivalences hold in classical world.



Applications of PRS

PRFS

Pseudo one-time pad

Commitments

Message authentication codes*

Secure
multiparty computation

PRS

Symmetric-key encryption*

*We construct PRFS from PRS under a 
certain parameter range.

No one-way functions needed!

One-time
Digital signatures

Pseudorandom function-like states



Commitments from PRS



Commitment schemes

Message 𝑚

commitment 𝑐

Protocol executed between two mistrustful parties (committer, receiver). 
Cryptographic equivalent of putting a message in sealed envelope that is opened later.

Committer Receiver

Commitment Phase: committer (having 𝑚) interacts with receiver, who obtains a 
commitment 𝑐. 

Hiding Property: The commitment 𝑐 does not reveal 𝑚 to receiver.

…



Commitment schemes

Protocol executed between two mistrustful parties (committer, receiver). 
Cryptographic equivalent of putting a message in sealed envelope that is opened later.

Committer Receiver

Opening Phase: committer opens commitment and reveals message 𝑚. Receiver 
rejects if opening is inconsistent with commitment, and accepts otherwise.

Binding Property: The committer cannot open to a different 𝑚′ ≠ 𝑚 to receiver.

…
𝑚



Quantum commitments from PRS

[Morimae, Yamakawa ‘22] Let 𝜓𝑘 𝑘 be PRS with output length ≥ 3𝜆. 
Given bit 𝑏, committer generates

𝜙𝑏 ≔ ෍

𝑘,𝑥,𝑧

𝑘, 𝑥, 𝑧 𝑅 ⊗𝑃𝑥,𝑧
𝑏 𝜓𝑘 𝐶

where 𝑘 = PRS key, and 𝑃𝑥,𝑧 = quantum one-time pad with keys 𝑥, 𝑧 ∈ 0,1 𝑛.

Commit(𝒃): committer sends register 𝐶 to receiver. 

Reveal: committer sends remaining register 𝑅 to receiver, who then checks if global 
state is |𝜙0⟩ or |𝜙1⟩.



Quantum commitments from PRS

[Morimae, Yamakawa ‘22] Let 𝜓𝑘 𝑘 be PRS with output length ≥ 3𝜆. 
Given bit 𝑏, committer generates

𝜙𝑏 ≔ ෍

𝑘,𝑥,𝑧

𝑘, 𝑥, 𝑧 𝑅 ⊗𝑃𝑥,𝑧
𝑏 𝜓𝑘 𝐶

Receiver can verify the commitment: 𝜙0 is almost orthogonal to 𝜙1 . This uses 
1-design property of one-time pad.

Computational Hiding property: Receiver cannot efficiently distinguish between 
𝑏 = 0 vs 𝑏 = 1. Otherwise could distinguish between 𝔼|𝜓𝑘⟩⟨𝜓𝑘| and maximally 
mixed state, which violates pseudorandomness property.



Quantum commitments from PRS

[Morimae, Yamakawa ‘22] Let 𝜓𝑘 𝑘 be PRS with output length ≥ 3𝜆. 
Given bit 𝑏, committer generates

𝜙𝑏 ≔ ෍

𝑘,𝑥,𝑧

𝑘, 𝑥, 𝑧 𝑅 ⊗𝑃𝑥,𝑧
𝑏 𝜓𝑘 𝐶

Statistical binding property: Reduced density matrices of 𝜙𝑏 on register 𝐶 are far 
apart. There is no way for the committer to change 𝜙0 to 𝜙1 by acting on 𝑅
only. 



Pseudorandom function-like states



Pseudorandom function-like states

𝐺
𝜆-bit key 𝑘 𝑛-qubit 

output𝑑-bit input 𝑥

[Ananth, Qian, Y. ‘22] introduced pseudorandom function-like states (PRFS).

Designed to be more flexible and less brittle than PRS. 

|𝜓𝑘,𝑥⟩

PRFS is quantum analogue of a pseudorandom function (PRF) in 

classical cryptography -- hence the name function-like.



Pseudorandom function-like states

A quantum poly-time algorithm 𝐺 is a PRFS generator if 

- given key 𝑘 ∈ 0,1 𝜆 and input 𝑥 ∈ 0,1 𝑑, 𝐺(𝑘, 𝑥) outputs 𝑛-qubit state |𝜓𝑘,𝑥⟩

- for all 𝑡, for all distinct inputs 𝑥1, … , 𝑥𝑠, for all poly-time distinguishers 𝐷

𝐷 𝜓1
⊗𝑡 , … , 𝜓𝑠

⊗𝑡 ≈ 𝐷 𝜗1
⊗𝑡 , … , 𝜗𝑠

⊗𝑡

𝜓𝑖 ’s sampled by:

- sampling random 𝑘 ∈ 0,1 𝜆

- setting 𝜓𝑖 = 𝐺 𝑘, 𝑥𝑖 for 𝑖 = 1,… , 𝑠

𝜗𝑖 ’s sampled by:
- Independently sampling 

Haar-random 𝜗𝑖 for 𝑖 = 1,… , 𝑠

Important: the distinguisher 𝐷 is allowed to depend on 𝑥1, … , 𝑥𝑠!



Pseudorandom function-like states

Easy direction: PRFS generators implies the existence of PRS generators.

Constructions: Using OWFs, can build PRFS generators using Ji, Liu, Song’s 
construction.

Not obvious how to construct PRFS using PRS as a black box.

The famous Goldreich-Goldwasser-Micali construction that builds pseudorandom 
functions (PRF) from PRGs requires copying outputs. 

GGM seems incompatible with PRS!



PRFS from PRS

Open question: construct PRFS from PRS in a black box way.

Theorem: Let 𝑑 = 𝑂 log 𝜆 . Assuming the existence of PRS 
generators with 𝑛 + 𝑑 -qubit outputs, there exist PRFS generators 
with 𝑑-bit inputs and 𝑛-qubit outputs.

Idea: Write 𝜓𝑘 = σ𝛼𝑘,𝑥 𝑥 ⊗ |𝜓𝑘,𝑥⟩ and use post-selection.

Corollary: This Theorem is enough to build the PRFS needed for the previous 
applications (pseudo one-time pad, encryption). 



Encryption from PRFS

(Private-key)



Pseudo one-time pad

In 1948 Shannon showed that the one-time pad achieves perfect 
secrecy. However, it requires a random key as long as the message.

Pseudo one-time pad: use a pseudorandom key instead from a PRG. 

Can we build pseudo one-time pads from pseudorandom states?

It is not obvious! Let’s use PRFS…



Quantum pseudo one-time pad

Suppose we want to encrypt 𝑟-bit messages 𝑚.

𝐺 𝑘, 𝑥 : PRFS generator with input (the ”𝑥” part) length 𝑂(log 𝑟). 



Quantum Pseudo
One-time Pad

𝑚 ∈ 0,1 𝑟 𝜓1 , … , |𝜓𝑟⟩ 𝑚

Looks completely random 
to me…

= PRFS generator with𝐺

poly-time adversary

𝑂(log 𝑟)-bit input 

Encoding: Encode 𝑖th bit of 𝑚 as 𝜓𝑖 = 𝐺 𝑘, 𝑖 ∘ 𝑚𝑖 .

= shared random key 𝑘 ∈ 0,1 𝜆

Decoding: Given 𝜓𝑖 , test if it equals  𝐺(𝑘, 𝑖 ∘ 0). If so, set 𝑚𝑖 = 0. Otherwise, set 𝑚𝑖 = 1.

Need to use pseudorandomness
of 𝐺 to argue this works!



Quantum Pseudo
One-time Pad

𝑚 ∈ 0,1 𝑟 𝜓1 , … , |𝜓𝑟⟩ 𝑚

poly-time adversary

Theorem: assuming the existence of PRFS generators with 𝑂(log 𝑟)-bit 
inputs and 𝜔(log 𝑟)-qubit outputs, there exist secure 
quantum pseudo one-time pad encryption schemes for 𝑟-bit messages. 



Other applications of PRS



Other applications of PRS

• Quantum complexity theory: PRS can be used to show hardness of 
fundamental quantum information theory tasks, such as compression 
of quantum states. [Bostanci, Efron, Metger, Poremba, Qian, Yuen ‘23]

• Quantum complexity: PRS does not imply OWF in a black box way 
[Kretschmer ‘21]. In quantum world, OWFs are no longer a minimal 
assumption.

• Quantum crypto: pseudorandom proofs of destruction [Behera, Brakerski, 

Sattath, Shmueli ‘23], quantum public key encryption [Coladangelo ‘23] [Barooti, 
Malavolta, Walter ‘23] [Grilo, Sattath, Vu ’23]….



Other applications of PRS

• Quantum machine learning: PRS can be used to show hardness of 
quantum machine learning tasks. [Huang, Broughton, Cotler, et al. ‘23]

• Quantum gravity: Entanglement in PRS can be ”tuned”, leading to 
“pseudoentanglement”. Has implications for complexity of AdS/CFT 
correspondence [Bouland, Fefferman, Vazirani ‘22]. 

• Quantum pseudorandomness: PRS inspired a flurry of quantum 
pseudorandom primitives (EFI, OWSG, pseudorandom unitaries, …)
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Open Questions

1. What can be built directly from PRS in a black box way?
- PRFS
- Digital signatures (to sign many messages)
- Symmetric key encryption (to encrypt many messages)
- All of cryptomania?

2. Can we separate PRS from some quantum crypto primitives (e.g. quantum money)?

3. What are other candidate constructions of PRS, and can we give evidence for their security?

4. What is the complexity of constructing PRS? Can they be computed by log depth circuits?  

5. What are other interesting quantum pseudorandom primitives?

Thank You!

𝜓
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